| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvsprp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ncvsprp.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | ncvsprp.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | ncvsprp.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | ncvsprp.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | elin | ⊢ ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ↔  ( 𝑊  ∈  NrmVec  ∧  𝑊  ∈  ℂVec ) ) | 
						
							| 7 |  | nvcnlm | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  NrmMod ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑊  ∈  ℂVec )  →  𝑊  ∈  NrmMod ) | 
						
							| 9 | 6 8 | sylbi | ⊢ ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  →  𝑊  ∈  NrmMod ) | 
						
							| 10 |  | eqid | ⊢ ( norm ‘ 𝐹 )  =  ( norm ‘ 𝐹 ) | 
						
							| 11 | 1 2 3 4 5 10 | nmvs | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 12 | 9 11 | syl3an1 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 13 |  | id | ⊢ ( 𝑊  ∈  ℂVec  →  𝑊  ∈  ℂVec ) | 
						
							| 14 | 13 | cvsclm | ⊢ ( 𝑊  ∈  ℂVec  →  𝑊  ∈  ℂMod ) | 
						
							| 15 | 6 14 | simplbiim | ⊢ ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  →  𝑊  ∈  ℂMod ) | 
						
							| 16 | 4 5 | clmabs | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝐾 )  →  ( abs ‘ 𝐴 )  =  ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) | 
						
							| 17 | 15 16 | sylan | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝐾 )  →  ( abs ‘ 𝐴 )  =  ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( abs ‘ 𝐴 )  =  ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) | 
						
							| 19 | 18 | eqcomd | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( ( norm ‘ 𝐹 ) ‘ 𝐴 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 21 | 12 20 | eqtrd | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) |