| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvsprp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ncvsprp.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 3 |
|
ncvsprp.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
ncvsprp.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
ncvsprp.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
elin |
⊢ ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec ) ) |
| 7 |
|
nvcnlm |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec ) → 𝑊 ∈ NrmMod ) |
| 9 |
6 8
|
sylbi |
⊢ ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) → 𝑊 ∈ NrmMod ) |
| 10 |
|
eqid |
⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) |
| 11 |
1 2 3 4 5 10
|
nmvs |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 12 |
9 11
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 13 |
|
id |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec ) |
| 14 |
13
|
cvsclm |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod ) |
| 15 |
6 14
|
simplbiim |
⊢ ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) → 𝑊 ∈ ℂMod ) |
| 16 |
4 5
|
clmabs |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 17 |
15 16
|
sylan |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 18 |
17
|
3adant3 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( abs ‘ 𝐴 ) = ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 19 |
18
|
eqcomd |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 21 |
12 20
|
eqtrd |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |