Step |
Hyp |
Ref |
Expression |
1 |
|
ncvsprp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ncvsprp.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
3 |
|
ncvsprp.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
ncvsprp.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
ncvsprp.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
elinel1 |
⊢ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) → 𝐴 ∈ 𝐾 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ 𝐾 ) |
8 |
1 2 3 4 5
|
ncvsprp |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
9 |
7 8
|
syl3an2 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
10 |
|
elinel2 |
⊢ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) → 𝐴 ∈ ℝ ) |
11 |
|
absid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑉 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑉 ) → ( ( abs ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) = ( 𝐴 · ( 𝑁 ‘ 𝐵 ) ) ) |
15 |
9 14
|
eqtrd |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝑁 ‘ 𝐵 ) ) ) |