Metamath Proof Explorer


Theorem ncvsge0

Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v 𝑉 = ( Base ‘ 𝑊 )
ncvsprp.n 𝑁 = ( norm ‘ 𝑊 )
ncvsprp.s · = ( ·𝑠𝑊 )
ncvsprp.f 𝐹 = ( Scalar ‘ 𝑊 )
ncvsprp.k 𝐾 = ( Base ‘ 𝐹 )
Assertion ncvsge0 ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝑁𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ncvsprp.v 𝑉 = ( Base ‘ 𝑊 )
2 ncvsprp.n 𝑁 = ( norm ‘ 𝑊 )
3 ncvsprp.s · = ( ·𝑠𝑊 )
4 ncvsprp.f 𝐹 = ( Scalar ‘ 𝑊 )
5 ncvsprp.k 𝐾 = ( Base ‘ 𝐹 )
6 elinel1 ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) → 𝐴𝐾 )
7 6 adantr ( ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) → 𝐴𝐾 )
8 1 2 3 4 5 ncvsprp ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴𝐾𝐵𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁𝐵 ) ) )
9 7 8 syl3an2 ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( 𝑁𝐵 ) ) )
10 elinel2 ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) → 𝐴 ∈ ℝ )
11 absid ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 )
12 10 11 sylan ( ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 )
13 12 3ad2ant2 ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵𝑉 ) → ( abs ‘ 𝐴 ) = 𝐴 )
14 13 oveq1d ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵𝑉 ) → ( ( abs ‘ 𝐴 ) · ( 𝑁𝐵 ) ) = ( 𝐴 · ( 𝑁𝐵 ) ) )
15 9 14 eqtrd ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ ( 𝐴 ∈ ( 𝐾 ∩ ℝ ) ∧ 0 ≤ 𝐴 ) ∧ 𝐵𝑉 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝑁𝐵 ) ) )