| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvsprp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ncvsprp.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | ncvsprp.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | ncvsprp.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | ncvsprp.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | elinel1 | ⊢ ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  →  𝐴  ∈  𝐾 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  ∧  0  ≤  𝐴 )  →  𝐴  ∈  𝐾 ) | 
						
							| 8 | 1 2 3 4 5 | ncvsprp | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 9 | 7 8 | syl3an2 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 10 |  | elinel2 | ⊢ ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 11 |  | absid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 12 | 10 11 | sylan | ⊢ ( ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  ∧  0  ≤  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑉 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑉 )  →  ( ( abs ‘ 𝐴 )  ·  ( 𝑁 ‘ 𝐵 ) )  =  ( 𝐴  ·  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 15 | 9 14 | eqtrd | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  ( 𝐴  ∈  ( 𝐾  ∩  ℝ )  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  ·  𝐵 ) )  =  ( 𝐴  ·  ( 𝑁 ‘ 𝐵 ) ) ) |