| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvsprp.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | ncvsprp.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | ncvsprp.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | ncvsprp.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | ncvsprp.k |  |-  K = ( Base ` F ) | 
						
							| 6 |  | elinel1 |  |-  ( A e. ( K i^i RR ) -> A e. K ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. ( K i^i RR ) /\ 0 <_ A ) -> A e. K ) | 
						
							| 8 | 1 2 3 4 5 | ncvsprp |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) | 
						
							| 9 | 7 8 | syl3an2 |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) | 
						
							| 10 |  | elinel2 |  |-  ( A e. ( K i^i RR ) -> A e. RR ) | 
						
							| 11 |  | absid |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) | 
						
							| 12 | 10 11 | sylan |  |-  ( ( A e. ( K i^i RR ) /\ 0 <_ A ) -> ( abs ` A ) = A ) | 
						
							| 13 | 12 | 3ad2ant2 |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( abs ` A ) = A ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( ( abs ` A ) x. ( N ` B ) ) = ( A x. ( N ` B ) ) ) | 
						
							| 15 | 9 14 | eqtrd |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( A x. ( N ` B ) ) ) |