Metamath Proof Explorer


Theorem ncvsge0

Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v
|- V = ( Base ` W )
ncvsprp.n
|- N = ( norm ` W )
ncvsprp.s
|- .x. = ( .s ` W )
ncvsprp.f
|- F = ( Scalar ` W )
ncvsprp.k
|- K = ( Base ` F )
Assertion ncvsge0
|- ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( A x. ( N ` B ) ) )

Proof

Step Hyp Ref Expression
1 ncvsprp.v
 |-  V = ( Base ` W )
2 ncvsprp.n
 |-  N = ( norm ` W )
3 ncvsprp.s
 |-  .x. = ( .s ` W )
4 ncvsprp.f
 |-  F = ( Scalar ` W )
5 ncvsprp.k
 |-  K = ( Base ` F )
6 elinel1
 |-  ( A e. ( K i^i RR ) -> A e. K )
7 6 adantr
 |-  ( ( A e. ( K i^i RR ) /\ 0 <_ A ) -> A e. K )
8 1 2 3 4 5 ncvsprp
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) )
9 7 8 syl3an2
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) )
10 elinel2
 |-  ( A e. ( K i^i RR ) -> A e. RR )
11 absid
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A )
12 10 11 sylan
 |-  ( ( A e. ( K i^i RR ) /\ 0 <_ A ) -> ( abs ` A ) = A )
13 12 3ad2ant2
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( abs ` A ) = A )
14 13 oveq1d
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( ( abs ` A ) x. ( N ` B ) ) = ( A x. ( N ` B ) ) )
15 9 14 eqtrd
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( A x. ( N ` B ) ) )