| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvsprp.v |
|- V = ( Base ` W ) |
| 2 |
|
ncvsprp.n |
|- N = ( norm ` W ) |
| 3 |
|
ncvsprp.s |
|- .x. = ( .s ` W ) |
| 4 |
|
ncvsprp.f |
|- F = ( Scalar ` W ) |
| 5 |
|
ncvsprp.k |
|- K = ( Base ` F ) |
| 6 |
|
elinel1 |
|- ( A e. ( K i^i RR ) -> A e. K ) |
| 7 |
6
|
adantr |
|- ( ( A e. ( K i^i RR ) /\ 0 <_ A ) -> A e. K ) |
| 8 |
1 2 3 4 5
|
ncvsprp |
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| 9 |
7 8
|
syl3an2 |
|- ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| 10 |
|
elinel2 |
|- ( A e. ( K i^i RR ) -> A e. RR ) |
| 11 |
|
absid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
| 12 |
10 11
|
sylan |
|- ( ( A e. ( K i^i RR ) /\ 0 <_ A ) -> ( abs ` A ) = A ) |
| 13 |
12
|
3ad2ant2 |
|- ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( abs ` A ) = A ) |
| 14 |
13
|
oveq1d |
|- ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( ( abs ` A ) x. ( N ` B ) ) = ( A x. ( N ` B ) ) ) |
| 15 |
9 14
|
eqtrd |
|- ( ( W e. ( NrmVec i^i CVec ) /\ ( A e. ( K i^i RR ) /\ 0 <_ A ) /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( A x. ( N ` B ) ) ) |