| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvsprp.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | ncvsprp.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | ncvsprp.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | simpl |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> W e. ( NrmVec i^i CVec ) ) | 
						
							| 5 |  | elin |  |-  ( W e. ( NrmVec i^i CVec ) <-> ( W e. NrmVec /\ W e. CVec ) ) | 
						
							| 6 |  | id |  |-  ( W e. CVec -> W e. CVec ) | 
						
							| 7 | 6 | cvsclm |  |-  ( W e. CVec -> W e. CMod ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 10 | 8 9 | clmneg1 |  |-  ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( W e. CVec -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 12 | 5 11 | simplbiim |  |-  ( W e. ( NrmVec i^i CVec ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 14 |  | simpr |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> A e. V ) | 
						
							| 15 | 1 2 3 8 9 | ncvsprp |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) -> ( N ` ( -u 1 .x. A ) ) = ( ( abs ` -u 1 ) x. ( N ` A ) ) ) | 
						
							| 16 | 4 13 14 15 | syl3anc |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> ( N ` ( -u 1 .x. A ) ) = ( ( abs ` -u 1 ) x. ( N ` A ) ) ) | 
						
							| 17 |  | ax-1cn |  |-  1 e. CC | 
						
							| 18 | 17 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 19 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 20 | 18 19 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 21 | 20 | oveq1i |  |-  ( ( abs ` -u 1 ) x. ( N ` A ) ) = ( 1 x. ( N ` A ) ) | 
						
							| 22 |  | nvcnlm |  |-  ( W e. NrmVec -> W e. NrmMod ) | 
						
							| 23 |  | nlmngp |  |-  ( W e. NrmMod -> W e. NrmGrp ) | 
						
							| 24 | 22 23 | syl |  |-  ( W e. NrmVec -> W e. NrmGrp ) | 
						
							| 25 | 24 | adantr |  |-  ( ( W e. NrmVec /\ W e. CVec ) -> W e. NrmGrp ) | 
						
							| 26 | 5 25 | sylbi |  |-  ( W e. ( NrmVec i^i CVec ) -> W e. NrmGrp ) | 
						
							| 27 | 1 2 | nmcl |  |-  ( ( W e. NrmGrp /\ A e. V ) -> ( N ` A ) e. RR ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> ( N ` A ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> ( N ` A ) e. CC ) | 
						
							| 30 | 29 | mullidd |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> ( 1 x. ( N ` A ) ) = ( N ` A ) ) | 
						
							| 31 | 21 30 | eqtrid |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> ( ( abs ` -u 1 ) x. ( N ` A ) ) = ( N ` A ) ) | 
						
							| 32 | 16 31 | eqtrd |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. V ) -> ( N ` ( -u 1 .x. A ) ) = ( N ` A ) ) |