| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvsprp.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | ncvsprp.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | ncvsprp.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | ncvsprp.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | ncvsprp.k |  |-  K = ( Base ` F ) | 
						
							| 6 |  | elin |  |-  ( W e. ( NrmVec i^i CVec ) <-> ( W e. NrmVec /\ W e. CVec ) ) | 
						
							| 7 |  | nvcnlm |  |-  ( W e. NrmVec -> W e. NrmMod ) | 
						
							| 8 | 7 | adantr |  |-  ( ( W e. NrmVec /\ W e. CVec ) -> W e. NrmMod ) | 
						
							| 9 | 6 8 | sylbi |  |-  ( W e. ( NrmVec i^i CVec ) -> W e. NrmMod ) | 
						
							| 10 |  | eqid |  |-  ( norm ` F ) = ( norm ` F ) | 
						
							| 11 | 1 2 3 4 5 10 | nmvs |  |-  ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) ) | 
						
							| 12 | 9 11 | syl3an1 |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) ) | 
						
							| 13 |  | id |  |-  ( W e. CVec -> W e. CVec ) | 
						
							| 14 | 13 | cvsclm |  |-  ( W e. CVec -> W e. CMod ) | 
						
							| 15 | 6 14 | simplbiim |  |-  ( W e. ( NrmVec i^i CVec ) -> W e. CMod ) | 
						
							| 16 | 4 5 | clmabs |  |-  ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) | 
						
							| 17 | 15 16 | sylan |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( ( norm ` F ) ` A ) = ( abs ` A ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) | 
						
							| 21 | 12 20 | eqtrd |  |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |