| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvsprp.v |
|- V = ( Base ` W ) |
| 2 |
|
ncvsprp.n |
|- N = ( norm ` W ) |
| 3 |
|
ncvsprp.s |
|- .x. = ( .s ` W ) |
| 4 |
|
ncvsprp.f |
|- F = ( Scalar ` W ) |
| 5 |
|
ncvsprp.k |
|- K = ( Base ` F ) |
| 6 |
|
elin |
|- ( W e. ( NrmVec i^i CVec ) <-> ( W e. NrmVec /\ W e. CVec ) ) |
| 7 |
|
nvcnlm |
|- ( W e. NrmVec -> W e. NrmMod ) |
| 8 |
7
|
adantr |
|- ( ( W e. NrmVec /\ W e. CVec ) -> W e. NrmMod ) |
| 9 |
6 8
|
sylbi |
|- ( W e. ( NrmVec i^i CVec ) -> W e. NrmMod ) |
| 10 |
|
eqid |
|- ( norm ` F ) = ( norm ` F ) |
| 11 |
1 2 3 4 5 10
|
nmvs |
|- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) ) |
| 12 |
9 11
|
syl3an1 |
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) ) |
| 13 |
|
id |
|- ( W e. CVec -> W e. CVec ) |
| 14 |
13
|
cvsclm |
|- ( W e. CVec -> W e. CMod ) |
| 15 |
6 14
|
simplbiim |
|- ( W e. ( NrmVec i^i CVec ) -> W e. CMod ) |
| 16 |
4 5
|
clmabs |
|- ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |
| 17 |
15 16
|
sylan |
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |
| 18 |
17
|
3adant3 |
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |
| 19 |
18
|
eqcomd |
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( ( norm ` F ) ` A ) = ( abs ` A ) ) |
| 20 |
19
|
oveq1d |
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| 21 |
12 20
|
eqtrd |
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |