Metamath Proof Explorer


Theorem ncvsprp

Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v
|- V = ( Base ` W )
ncvsprp.n
|- N = ( norm ` W )
ncvsprp.s
|- .x. = ( .s ` W )
ncvsprp.f
|- F = ( Scalar ` W )
ncvsprp.k
|- K = ( Base ` F )
Assertion ncvsprp
|- ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) )

Proof

Step Hyp Ref Expression
1 ncvsprp.v
 |-  V = ( Base ` W )
2 ncvsprp.n
 |-  N = ( norm ` W )
3 ncvsprp.s
 |-  .x. = ( .s ` W )
4 ncvsprp.f
 |-  F = ( Scalar ` W )
5 ncvsprp.k
 |-  K = ( Base ` F )
6 elin
 |-  ( W e. ( NrmVec i^i CVec ) <-> ( W e. NrmVec /\ W e. CVec ) )
7 nvcnlm
 |-  ( W e. NrmVec -> W e. NrmMod )
8 7 adantr
 |-  ( ( W e. NrmVec /\ W e. CVec ) -> W e. NrmMod )
9 6 8 sylbi
 |-  ( W e. ( NrmVec i^i CVec ) -> W e. NrmMod )
10 eqid
 |-  ( norm ` F ) = ( norm ` F )
11 1 2 3 4 5 10 nmvs
 |-  ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) )
12 9 11 syl3an1
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) )
13 id
 |-  ( W e. CVec -> W e. CVec )
14 13 cvsclm
 |-  ( W e. CVec -> W e. CMod )
15 6 14 simplbiim
 |-  ( W e. ( NrmVec i^i CVec ) -> W e. CMod )
16 4 5 clmabs
 |-  ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) )
17 15 16 sylan
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) )
18 17 3adant3
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) )
19 18 eqcomd
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( ( norm ` F ) ` A ) = ( abs ` A ) )
20 19 oveq1d
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( ( ( norm ` F ) ` A ) x. ( N ` B ) ) = ( ( abs ` A ) x. ( N ` B ) ) )
21 12 20 eqtrd
 |-  ( ( W e. ( NrmVec i^i CVec ) /\ A e. K /\ B e. V ) -> ( N ` ( A .x. B ) ) = ( ( abs ` A ) x. ( N ` B ) ) )