Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006) (Revised by AV, 8-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ncvsprp.v | |
|
ncvsprp.n | |
||
ncvsprp.s | |
||
Assertion | ncvsm1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncvsprp.v | |
|
2 | ncvsprp.n | |
|
3 | ncvsprp.s | |
|
4 | simpl | |
|
5 | elin | |
|
6 | id | |
|
7 | 6 | cvsclm | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 | clmneg1 | |
11 | 7 10 | syl | |
12 | 5 11 | simplbiim | |
13 | 12 | adantr | |
14 | simpr | |
|
15 | 1 2 3 8 9 | ncvsprp | |
16 | 4 13 14 15 | syl3anc | |
17 | ax-1cn | |
|
18 | 17 | absnegi | |
19 | abs1 | |
|
20 | 18 19 | eqtri | |
21 | 20 | oveq1i | |
22 | nvcnlm | |
|
23 | nlmngp | |
|
24 | 22 23 | syl | |
25 | 24 | adantr | |
26 | 5 25 | sylbi | |
27 | 1 2 | nmcl | |
28 | 26 27 | sylan | |
29 | 28 | recnd | |
30 | 29 | mullidd | |
31 | 21 30 | eqtrid | |
32 | 16 31 | eqtrd | |