Metamath Proof Explorer


Theorem ncvsm1

Description: The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V=BaseW
ncvsprp.n N=normW
ncvsprp.s ·˙=W
Assertion ncvsm1 WNrmVecℂVecAVN-1·˙A=NA

Proof

Step Hyp Ref Expression
1 ncvsprp.v V=BaseW
2 ncvsprp.n N=normW
3 ncvsprp.s ·˙=W
4 simpl WNrmVecℂVecAVWNrmVecℂVec
5 elin WNrmVecℂVecWNrmVecWℂVec
6 id WℂVecWℂVec
7 6 cvsclm WℂVecWCMod
8 eqid ScalarW=ScalarW
9 eqid BaseScalarW=BaseScalarW
10 8 9 clmneg1 WCMod1BaseScalarW
11 7 10 syl WℂVec1BaseScalarW
12 5 11 simplbiim WNrmVecℂVec1BaseScalarW
13 12 adantr WNrmVecℂVecAV1BaseScalarW
14 simpr WNrmVecℂVecAVAV
15 1 2 3 8 9 ncvsprp WNrmVecℂVec1BaseScalarWAVN-1·˙A=1NA
16 4 13 14 15 syl3anc WNrmVecℂVecAVN-1·˙A=1NA
17 ax-1cn 1
18 17 absnegi 1=1
19 abs1 1=1
20 18 19 eqtri 1=1
21 20 oveq1i 1NA=1NA
22 nvcnlm WNrmVecWNrmMod
23 nlmngp WNrmModWNrmGrp
24 22 23 syl WNrmVecWNrmGrp
25 24 adantr WNrmVecWℂVecWNrmGrp
26 5 25 sylbi WNrmVecℂVecWNrmGrp
27 1 2 nmcl WNrmGrpAVNA
28 26 27 sylan WNrmVecℂVecAVNA
29 28 recnd WNrmVecℂVecAVNA
30 29 mullidd WNrmVecℂVecAV1NA=NA
31 21 30 eqtrid WNrmVecℂVecAV1NA=NA
32 16 31 eqtrd WNrmVecℂVecAVN-1·˙A=NA