Metamath Proof Explorer


Theorem ncvsdif

Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V=BaseW
ncvsprp.n N=normW
ncvsprp.s ·˙=W
ncvsdif.p +˙=+W
Assertion ncvsdif WNrmVecℂVecAVBVNA+˙-1·˙B=NB+˙-1·˙A

Proof

Step Hyp Ref Expression
1 ncvsprp.v V=BaseW
2 ncvsprp.n N=normW
3 ncvsprp.s ·˙=W
4 ncvsdif.p +˙=+W
5 elin WNrmVecℂVecWNrmVecWℂVec
6 id WℂVecWℂVec
7 6 cvsclm WℂVecWCMod
8 5 7 simplbiim WNrmVecℂVecWCMod
9 eqid -W=-W
10 eqid ScalarW=ScalarW
11 1 4 9 10 3 clmvsubval WCModAVBVA-WB=A+˙-1·˙B
12 11 eqcomd WCModAVBVA+˙-1·˙B=A-WB
13 8 12 syl3an1 WNrmVecℂVecAVBVA+˙-1·˙B=A-WB
14 13 fveq2d WNrmVecℂVecAVBVNA+˙-1·˙B=NA-WB
15 nvcnlm WNrmVecWNrmMod
16 nlmngp WNrmModWNrmGrp
17 15 16 syl WNrmVecWNrmGrp
18 17 adantr WNrmVecWℂVecWNrmGrp
19 5 18 sylbi WNrmVecℂVecWNrmGrp
20 1 2 9 nmsub WNrmGrpAVBVNA-WB=NB-WA
21 19 20 syl3an1 WNrmVecℂVecAVBVNA-WB=NB-WA
22 8 3ad2ant1 WNrmVecℂVecAVBVWCMod
23 simp3 WNrmVecℂVecAVBVBV
24 simp2 WNrmVecℂVecAVBVAV
25 1 4 9 10 3 clmvsubval WCModBVAVB-WA=B+˙-1·˙A
26 22 23 24 25 syl3anc WNrmVecℂVecAVBVB-WA=B+˙-1·˙A
27 26 fveq2d WNrmVecℂVecAVBVNB-WA=NB+˙-1·˙A
28 14 21 27 3eqtrd WNrmVecℂVecAVBVNA+˙-1·˙B=NB+˙-1·˙A