Metamath Proof Explorer


Theorem nmsub

Description: The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nmmtri.m -˙=-G
Assertion nmsub GNrmGrpAXBXNA-˙B=NB-˙A

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nmmtri.m -˙=-G
4 simp1 GNrmGrpAXBXGNrmGrp
5 ngpgrp GNrmGrpGGrp
6 4 5 syl GNrmGrpAXBXGGrp
7 simp3 GNrmGrpAXBXBX
8 simp2 GNrmGrpAXBXAX
9 eqid invgG=invgG
10 1 3 9 grpinvsub GGrpBXAXinvgGB-˙A=A-˙B
11 6 7 8 10 syl3anc GNrmGrpAXBXinvgGB-˙A=A-˙B
12 11 fveq2d GNrmGrpAXBXNinvgGB-˙A=NA-˙B
13 1 3 grpsubcl GGrpBXAXB-˙AX
14 6 7 8 13 syl3anc GNrmGrpAXBXB-˙AX
15 1 2 9 nminv GNrmGrpB-˙AXNinvgGB-˙A=NB-˙A
16 4 14 15 syl2anc GNrmGrpAXBXNinvgGB-˙A=NB-˙A
17 12 16 eqtr3d GNrmGrpAXBXNA-˙B=NB-˙A