Metamath Proof Explorer


Theorem ncvspi

Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V=BaseW
ncvsprp.n N=normW
ncvsprp.s ·˙=W
ncvsdif.p +˙=+W
ncvspi.f F=ScalarW
ncvspi.k K=BaseF
Assertion ncvspi WNrmVecℂVecAVBViKNA+˙i·˙B=NB+˙i·˙A

Proof

Step Hyp Ref Expression
1 ncvsprp.v V=BaseW
2 ncvsprp.n N=normW
3 ncvsprp.s ·˙=W
4 ncvsdif.p +˙=+W
5 ncvspi.f F=ScalarW
6 ncvspi.k K=BaseF
7 elin WNrmVecℂVecWNrmVecWℂVec
8 nvcnlm WNrmVecWNrmMod
9 nlmngp WNrmModWNrmGrp
10 8 9 syl WNrmVecWNrmGrp
11 10 adantr WNrmVecWℂVecWNrmGrp
12 7 11 sylbi WNrmVecℂVecWNrmGrp
13 12 3ad2ant1 WNrmVecℂVecAVBViKWNrmGrp
14 nvclmod WNrmVecWLMod
15 lmodgrp WLModWGrp
16 14 15 syl WNrmVecWGrp
17 16 adantr WNrmVecWℂVecWGrp
18 7 17 sylbi WNrmVecℂVecWGrp
19 18 3ad2ant1 WNrmVecℂVecAVBViKWGrp
20 simp2l WNrmVecℂVecAVBViKAV
21 id WℂVecWℂVec
22 21 cvsclm WℂVecWCMod
23 7 22 simplbiim WNrmVecℂVecWCMod
24 23 3ad2ant1 WNrmVecℂVecAVBViKWCMod
25 simp3 WNrmVecℂVecAVBViKiK
26 simp2r WNrmVecℂVecAVBViKBV
27 1 5 3 6 clmvscl WCModiKBVi·˙BV
28 24 25 26 27 syl3anc WNrmVecℂVecAVBViKi·˙BV
29 1 4 grpcl WGrpAVi·˙BVA+˙i·˙BV
30 19 20 28 29 syl3anc WNrmVecℂVecAVBViKA+˙i·˙BV
31 1 2 nmcl WNrmGrpA+˙i·˙BVNA+˙i·˙B
32 13 30 31 syl2anc WNrmVecℂVecAVBViKNA+˙i·˙B
33 32 recnd WNrmVecℂVecAVBViKNA+˙i·˙B
34 33 mullidd WNrmVecℂVecAVBViK1NA+˙i·˙B=NA+˙i·˙B
35 ax-icn i
36 35 absnegi i=i
37 absi i=1
38 36 37 eqtri i=1
39 38 oveq1i iNA+˙i·˙B=1NA+˙i·˙B
40 simp1 WNrmVecℂVecAVBViKWNrmVecℂVec
41 5 6 clmneg WCModiKi=invgFi
42 22 41 sylan WℂVeciKi=invgFi
43 5 clmfgrp WCModFGrp
44 22 43 syl WℂVecFGrp
45 eqid invgF=invgF
46 6 45 grpinvcl FGrpiKinvgFiK
47 44 46 sylan WℂVeciKinvgFiK
48 42 47 eqeltrd WℂVeciKiK
49 48 ex WℂVeciKiK
50 7 49 simplbiim WNrmVecℂVeciKiK
51 50 imp WNrmVecℂVeciKiK
52 51 3adant2 WNrmVecℂVecAVBViKiK
53 1 2 3 5 6 ncvsprp WNrmVecℂVeciKA+˙i·˙BVNi·˙A+˙i·˙B=iNA+˙i·˙B
54 40 52 30 53 syl3anc WNrmVecℂVecAVBViKNi·˙A+˙i·˙B=iNA+˙i·˙B
55 1 5 3 6 4 clmvsdi WCModiKAVi·˙BVi·˙A+˙i·˙B=i·˙A+˙i·˙i·˙B
56 24 52 20 28 55 syl13anc WNrmVecℂVecAVBViKi·˙A+˙i·˙B=i·˙A+˙i·˙i·˙B
57 35 35 mulneg1i ii=ii
58 ixi ii=1
59 58 negeqi ii=-1
60 negneg1e1 -1=1
61 59 60 eqtri ii=1
62 57 61 eqtri ii=1
63 62 oveq1i ii·˙B=1·˙B
64 1 5 3 6 clmvsass WCModiKiKBVii·˙B=i·˙i·˙B
65 24 52 25 26 64 syl13anc WNrmVecℂVecAVBViKii·˙B=i·˙i·˙B
66 simpr AVBVBV
67 23 66 anim12i WNrmVecℂVecAVBVWCModBV
68 67 3adant3 WNrmVecℂVecAVBViKWCModBV
69 1 3 clmvs1 WCModBV1·˙B=B
70 68 69 syl WNrmVecℂVecAVBViK1·˙B=B
71 63 65 70 3eqtr3a WNrmVecℂVecAVBViKi·˙i·˙B=B
72 71 oveq2d WNrmVecℂVecAVBViKi·˙A+˙i·˙i·˙B=i·˙A+˙B
73 clmabl WCModWAbel
74 22 73 syl WℂVecWAbel
75 7 74 simplbiim WNrmVecℂVecWAbel
76 75 3ad2ant1 WNrmVecℂVecAVBViKWAbel
77 1 5 3 6 clmvscl WCModiKAVi·˙AV
78 24 52 20 77 syl3anc WNrmVecℂVecAVBViKi·˙AV
79 1 4 ablcom WAbeli·˙AVBVi·˙A+˙B=B+˙i·˙A
80 76 78 26 79 syl3anc WNrmVecℂVecAVBViKi·˙A+˙B=B+˙i·˙A
81 56 72 80 3eqtrd WNrmVecℂVecAVBViKi·˙A+˙i·˙B=B+˙i·˙A
82 81 fveq2d WNrmVecℂVecAVBViKNi·˙A+˙i·˙B=NB+˙i·˙A
83 54 82 eqtr3d WNrmVecℂVecAVBViKiNA+˙i·˙B=NB+˙i·˙A
84 39 83 eqtr3id WNrmVecℂVecAVBViK1NA+˙i·˙B=NB+˙i·˙A
85 34 84 eqtr3d WNrmVecℂVecAVBViKNA+˙i·˙B=NB+˙i·˙A