Step |
Hyp |
Ref |
Expression |
1 |
|
ncvsprp.v |
|
2 |
|
ncvsprp.n |
|
3 |
|
ncvsprp.s |
|
4 |
|
ncvsdif.p |
|
5 |
|
ncvspi.f |
|
6 |
|
ncvspi.k |
|
7 |
|
elin |
|
8 |
|
nvcnlm |
|
9 |
|
nlmngp |
|
10 |
8 9
|
syl |
|
11 |
10
|
adantr |
|
12 |
7 11
|
sylbi |
|
13 |
12
|
3ad2ant1 |
|
14 |
|
nvclmod |
|
15 |
|
lmodgrp |
|
16 |
14 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
7 17
|
sylbi |
|
19 |
18
|
3ad2ant1 |
|
20 |
|
simp2l |
|
21 |
|
id |
|
22 |
21
|
cvsclm |
|
23 |
7 22
|
simplbiim |
|
24 |
23
|
3ad2ant1 |
|
25 |
|
simp3 |
|
26 |
|
simp2r |
|
27 |
1 5 3 6
|
clmvscl |
|
28 |
24 25 26 27
|
syl3anc |
|
29 |
1 4
|
grpcl |
|
30 |
19 20 28 29
|
syl3anc |
|
31 |
1 2
|
nmcl |
|
32 |
13 30 31
|
syl2anc |
|
33 |
32
|
recnd |
|
34 |
33
|
mulid2d |
|
35 |
|
ax-icn |
|
36 |
35
|
absnegi |
|
37 |
|
absi |
|
38 |
36 37
|
eqtri |
|
39 |
38
|
oveq1i |
|
40 |
|
simp1 |
|
41 |
5 6
|
clmneg |
|
42 |
22 41
|
sylan |
|
43 |
5
|
clmfgrp |
|
44 |
22 43
|
syl |
|
45 |
|
eqid |
|
46 |
6 45
|
grpinvcl |
|
47 |
44 46
|
sylan |
|
48 |
42 47
|
eqeltrd |
|
49 |
48
|
ex |
|
50 |
7 49
|
simplbiim |
|
51 |
50
|
imp |
|
52 |
51
|
3adant2 |
|
53 |
1 2 3 5 6
|
ncvsprp |
|
54 |
40 52 30 53
|
syl3anc |
|
55 |
1 5 3 6 4
|
clmvsdi |
|
56 |
24 52 20 28 55
|
syl13anc |
|
57 |
35 35
|
mulneg1i |
|
58 |
|
ixi |
|
59 |
58
|
negeqi |
|
60 |
|
negneg1e1 |
|
61 |
59 60
|
eqtri |
|
62 |
57 61
|
eqtri |
|
63 |
62
|
oveq1i |
|
64 |
1 5 3 6
|
clmvsass |
|
65 |
24 52 25 26 64
|
syl13anc |
|
66 |
|
simpr |
|
67 |
23 66
|
anim12i |
|
68 |
67
|
3adant3 |
|
69 |
1 3
|
clmvs1 |
|
70 |
68 69
|
syl |
|
71 |
63 65 70
|
3eqtr3a |
|
72 |
71
|
oveq2d |
|
73 |
|
clmabl |
|
74 |
22 73
|
syl |
|
75 |
7 74
|
simplbiim |
|
76 |
75
|
3ad2ant1 |
|
77 |
1 5 3 6
|
clmvscl |
|
78 |
24 52 20 77
|
syl3anc |
|
79 |
1 4
|
ablcom |
|
80 |
76 78 26 79
|
syl3anc |
|
81 |
56 72 80
|
3eqtrd |
|
82 |
81
|
fveq2d |
|
83 |
54 82
|
eqtr3d |
|
84 |
39 83
|
eqtr3id |
|
85 |
34 84
|
eqtr3d |
|