Step |
Hyp |
Ref |
Expression |
1 |
|
ncvs1.x |
|
2 |
|
ncvs1.n |
|
3 |
|
ncvs1.z |
|
4 |
|
ncvs1.s |
|
5 |
|
ncvs1.f |
|
6 |
|
ncvs1.k |
|
7 |
|
simp1 |
|
8 |
|
simp3 |
|
9 |
|
elin |
|
10 |
|
nvcnlm |
|
11 |
|
nlmngp |
|
12 |
10 11
|
syl |
|
13 |
12
|
adantr |
|
14 |
9 13
|
sylbi |
|
15 |
|
simpl |
|
16 |
14 15
|
anim12i |
|
17 |
1 2
|
nmcl |
|
18 |
16 17
|
syl |
|
19 |
1 2 3
|
nmeq0 |
|
20 |
19
|
bicomd |
|
21 |
14 20
|
sylan |
|
22 |
21
|
necon3bid |
|
23 |
22
|
biimpd |
|
24 |
23
|
impr |
|
25 |
18 24
|
rereccld |
|
26 |
25
|
3adant3 |
|
27 |
8 26
|
elind |
|
28 |
|
1re |
|
29 |
|
0le1 |
|
30 |
28 29
|
pm3.2i |
|
31 |
30
|
a1i |
|
32 |
|
simprr |
|
33 |
1 2 3
|
nmgt0 |
|
34 |
16 33
|
syl |
|
35 |
32 34
|
mpbid |
|
36 |
31 18 35
|
jca32 |
|
37 |
36
|
3adant3 |
|
38 |
|
divge0 |
|
39 |
37 38
|
syl |
|
40 |
|
simp2l |
|
41 |
1 2 4 5 6
|
ncvsge0 |
|
42 |
7 27 39 40 41
|
syl121anc |
|
43 |
16
|
3adant3 |
|
44 |
43 17
|
syl |
|
45 |
44
|
recnd |
|
46 |
24
|
3adant3 |
|
47 |
45 46
|
recid2d |
|
48 |
42 47
|
eqtrd |
|