Metamath Proof Explorer


Theorem ncvs1

Description: From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvs1.x X = Base G
ncvs1.n N = norm G
ncvs1.z 0 ˙ = 0 G
ncvs1.s · ˙ = G
ncvs1.f F = Scalar G
ncvs1.k K = Base F
Assertion ncvs1 G NrmVec ℂVec A X A 0 ˙ 1 N A K N 1 N A · ˙ A = 1

Proof

Step Hyp Ref Expression
1 ncvs1.x X = Base G
2 ncvs1.n N = norm G
3 ncvs1.z 0 ˙ = 0 G
4 ncvs1.s · ˙ = G
5 ncvs1.f F = Scalar G
6 ncvs1.k K = Base F
7 simp1 G NrmVec ℂVec A X A 0 ˙ 1 N A K G NrmVec ℂVec
8 simp3 G NrmVec ℂVec A X A 0 ˙ 1 N A K 1 N A K
9 elin G NrmVec ℂVec G NrmVec G ℂVec
10 nvcnlm G NrmVec G NrmMod
11 nlmngp G NrmMod G NrmGrp
12 10 11 syl G NrmVec G NrmGrp
13 12 adantr G NrmVec G ℂVec G NrmGrp
14 9 13 sylbi G NrmVec ℂVec G NrmGrp
15 simpl A X A 0 ˙ A X
16 14 15 anim12i G NrmVec ℂVec A X A 0 ˙ G NrmGrp A X
17 1 2 nmcl G NrmGrp A X N A
18 16 17 syl G NrmVec ℂVec A X A 0 ˙ N A
19 1 2 3 nmeq0 G NrmGrp A X N A = 0 A = 0 ˙
20 19 bicomd G NrmGrp A X A = 0 ˙ N A = 0
21 14 20 sylan G NrmVec ℂVec A X A = 0 ˙ N A = 0
22 21 necon3bid G NrmVec ℂVec A X A 0 ˙ N A 0
23 22 biimpd G NrmVec ℂVec A X A 0 ˙ N A 0
24 23 impr G NrmVec ℂVec A X A 0 ˙ N A 0
25 18 24 rereccld G NrmVec ℂVec A X A 0 ˙ 1 N A
26 25 3adant3 G NrmVec ℂVec A X A 0 ˙ 1 N A K 1 N A
27 8 26 elind G NrmVec ℂVec A X A 0 ˙ 1 N A K 1 N A K
28 1re 1
29 0le1 0 1
30 28 29 pm3.2i 1 0 1
31 30 a1i G NrmVec ℂVec A X A 0 ˙ 1 0 1
32 simprr G NrmVec ℂVec A X A 0 ˙ A 0 ˙
33 1 2 3 nmgt0 G NrmGrp A X A 0 ˙ 0 < N A
34 16 33 syl G NrmVec ℂVec A X A 0 ˙ A 0 ˙ 0 < N A
35 32 34 mpbid G NrmVec ℂVec A X A 0 ˙ 0 < N A
36 31 18 35 jca32 G NrmVec ℂVec A X A 0 ˙ 1 0 1 N A 0 < N A
37 36 3adant3 G NrmVec ℂVec A X A 0 ˙ 1 N A K 1 0 1 N A 0 < N A
38 divge0 1 0 1 N A 0 < N A 0 1 N A
39 37 38 syl G NrmVec ℂVec A X A 0 ˙ 1 N A K 0 1 N A
40 simp2l G NrmVec ℂVec A X A 0 ˙ 1 N A K A X
41 1 2 4 5 6 ncvsge0 G NrmVec ℂVec 1 N A K 0 1 N A A X N 1 N A · ˙ A = 1 N A N A
42 7 27 39 40 41 syl121anc G NrmVec ℂVec A X A 0 ˙ 1 N A K N 1 N A · ˙ A = 1 N A N A
43 16 3adant3 G NrmVec ℂVec A X A 0 ˙ 1 N A K G NrmGrp A X
44 43 17 syl G NrmVec ℂVec A X A 0 ˙ 1 N A K N A
45 44 recnd G NrmVec ℂVec A X A 0 ˙ 1 N A K N A
46 24 3adant3 G NrmVec ℂVec A X A 0 ˙ 1 N A K N A 0
47 45 46 recid2d G NrmVec ℂVec A X A 0 ˙ 1 N A K 1 N A N A = 1
48 42 47 eqtrd G NrmVec ℂVec A X A 0 ˙ 1 N A K N 1 N A · ˙ A = 1