| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvs1.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | ncvs1.n |  |-  N = ( norm ` G ) | 
						
							| 3 |  | ncvs1.z |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | ncvs1.s |  |-  .x. = ( .s ` G ) | 
						
							| 5 |  | ncvs1.f |  |-  F = ( Scalar ` G ) | 
						
							| 6 |  | ncvs1.k |  |-  K = ( Base ` F ) | 
						
							| 7 |  | simp1 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> G e. ( NrmVec i^i CVec ) ) | 
						
							| 8 |  | simp3 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. K ) | 
						
							| 9 |  | elin |  |-  ( G e. ( NrmVec i^i CVec ) <-> ( G e. NrmVec /\ G e. CVec ) ) | 
						
							| 10 |  | nvcnlm |  |-  ( G e. NrmVec -> G e. NrmMod ) | 
						
							| 11 |  | nlmngp |  |-  ( G e. NrmMod -> G e. NrmGrp ) | 
						
							| 12 | 10 11 | syl |  |-  ( G e. NrmVec -> G e. NrmGrp ) | 
						
							| 13 | 12 | adantr |  |-  ( ( G e. NrmVec /\ G e. CVec ) -> G e. NrmGrp ) | 
						
							| 14 | 9 13 | sylbi |  |-  ( G e. ( NrmVec i^i CVec ) -> G e. NrmGrp ) | 
						
							| 15 |  | simpl |  |-  ( ( A e. X /\ A =/= .0. ) -> A e. X ) | 
						
							| 16 | 14 15 | anim12i |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( G e. NrmGrp /\ A e. X ) ) | 
						
							| 17 | 1 2 | nmcl |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( N ` A ) e. RR ) | 
						
							| 19 | 1 2 3 | nmeq0 |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) | 
						
							| 20 | 19 | bicomd |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( A = .0. <-> ( N ` A ) = 0 ) ) | 
						
							| 21 | 14 20 | sylan |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A = .0. <-> ( N ` A ) = 0 ) ) | 
						
							| 22 | 21 | necon3bid |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A =/= .0. <-> ( N ` A ) =/= 0 ) ) | 
						
							| 23 | 22 | biimpd |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A =/= .0. -> ( N ` A ) =/= 0 ) ) | 
						
							| 24 | 23 | impr |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( N ` A ) =/= 0 ) | 
						
							| 25 | 18 24 | rereccld |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( 1 / ( N ` A ) ) e. RR ) | 
						
							| 26 | 25 | 3adant3 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. RR ) | 
						
							| 27 | 8 26 | elind |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. ( K i^i RR ) ) | 
						
							| 28 |  | 1re |  |-  1 e. RR | 
						
							| 29 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 30 | 28 29 | pm3.2i |  |-  ( 1 e. RR /\ 0 <_ 1 ) | 
						
							| 31 | 30 | a1i |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( 1 e. RR /\ 0 <_ 1 ) ) | 
						
							| 32 |  | simprr |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> A =/= .0. ) | 
						
							| 33 | 1 2 3 | nmgt0 |  |-  ( ( G e. NrmGrp /\ A e. X ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) | 
						
							| 34 | 16 33 | syl |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) | 
						
							| 35 | 32 34 | mpbid |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> 0 < ( N ` A ) ) | 
						
							| 36 | 31 18 35 | jca32 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) ) | 
						
							| 37 | 36 | 3adant3 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) ) | 
						
							| 38 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) -> 0 <_ ( 1 / ( N ` A ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> 0 <_ ( 1 / ( N ` A ) ) ) | 
						
							| 40 |  | simp2l |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> A e. X ) | 
						
							| 41 | 1 2 4 5 6 | ncvsge0 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( ( 1 / ( N ` A ) ) e. ( K i^i RR ) /\ 0 <_ ( 1 / ( N ` A ) ) ) /\ A e. X ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) | 
						
							| 42 | 7 27 39 40 41 | syl121anc |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) | 
						
							| 43 | 16 | 3adant3 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( G e. NrmGrp /\ A e. X ) ) | 
						
							| 44 | 43 17 | syl |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) e. RR ) | 
						
							| 45 | 44 | recnd |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) e. CC ) | 
						
							| 46 | 24 | 3adant3 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) =/= 0 ) | 
						
							| 47 | 45 46 | recid2d |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) = 1 ) | 
						
							| 48 | 42 47 | eqtrd |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = 1 ) |