Step |
Hyp |
Ref |
Expression |
1 |
|
ncvs1.x |
|- X = ( Base ` G ) |
2 |
|
ncvs1.n |
|- N = ( norm ` G ) |
3 |
|
ncvs1.z |
|- .0. = ( 0g ` G ) |
4 |
|
ncvs1.s |
|- .x. = ( .s ` G ) |
5 |
|
ncvs1.f |
|- F = ( Scalar ` G ) |
6 |
|
ncvs1.k |
|- K = ( Base ` F ) |
7 |
|
simp1 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> G e. ( NrmVec i^i CVec ) ) |
8 |
|
simp3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. K ) |
9 |
|
elin |
|- ( G e. ( NrmVec i^i CVec ) <-> ( G e. NrmVec /\ G e. CVec ) ) |
10 |
|
nvcnlm |
|- ( G e. NrmVec -> G e. NrmMod ) |
11 |
|
nlmngp |
|- ( G e. NrmMod -> G e. NrmGrp ) |
12 |
10 11
|
syl |
|- ( G e. NrmVec -> G e. NrmGrp ) |
13 |
12
|
adantr |
|- ( ( G e. NrmVec /\ G e. CVec ) -> G e. NrmGrp ) |
14 |
9 13
|
sylbi |
|- ( G e. ( NrmVec i^i CVec ) -> G e. NrmGrp ) |
15 |
|
simpl |
|- ( ( A e. X /\ A =/= .0. ) -> A e. X ) |
16 |
14 15
|
anim12i |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( G e. NrmGrp /\ A e. X ) ) |
17 |
1 2
|
nmcl |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |
18 |
16 17
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( N ` A ) e. RR ) |
19 |
1 2 3
|
nmeq0 |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |
20 |
19
|
bicomd |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( A = .0. <-> ( N ` A ) = 0 ) ) |
21 |
14 20
|
sylan |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A = .0. <-> ( N ` A ) = 0 ) ) |
22 |
21
|
necon3bid |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A =/= .0. <-> ( N ` A ) =/= 0 ) ) |
23 |
22
|
biimpd |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A =/= .0. -> ( N ` A ) =/= 0 ) ) |
24 |
23
|
impr |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( N ` A ) =/= 0 ) |
25 |
18 24
|
rereccld |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( 1 / ( N ` A ) ) e. RR ) |
26 |
25
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. RR ) |
27 |
8 26
|
elind |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. ( K i^i RR ) ) |
28 |
|
1re |
|- 1 e. RR |
29 |
|
0le1 |
|- 0 <_ 1 |
30 |
28 29
|
pm3.2i |
|- ( 1 e. RR /\ 0 <_ 1 ) |
31 |
30
|
a1i |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( 1 e. RR /\ 0 <_ 1 ) ) |
32 |
|
simprr |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> A =/= .0. ) |
33 |
1 2 3
|
nmgt0 |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) |
34 |
16 33
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) |
35 |
32 34
|
mpbid |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> 0 < ( N ` A ) ) |
36 |
31 18 35
|
jca32 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) ) |
37 |
36
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) ) |
38 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) -> 0 <_ ( 1 / ( N ` A ) ) ) |
39 |
37 38
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> 0 <_ ( 1 / ( N ` A ) ) ) |
40 |
|
simp2l |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> A e. X ) |
41 |
1 2 4 5 6
|
ncvsge0 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( ( 1 / ( N ` A ) ) e. ( K i^i RR ) /\ 0 <_ ( 1 / ( N ` A ) ) ) /\ A e. X ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) |
42 |
7 27 39 40 41
|
syl121anc |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) |
43 |
16
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( G e. NrmGrp /\ A e. X ) ) |
44 |
43 17
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) e. RR ) |
45 |
44
|
recnd |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) e. CC ) |
46 |
24
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) =/= 0 ) |
47 |
45 46
|
recid2d |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) = 1 ) |
48 |
42 47
|
eqtrd |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = 1 ) |