| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvs1.x |
|- X = ( Base ` G ) |
| 2 |
|
ncvs1.n |
|- N = ( norm ` G ) |
| 3 |
|
ncvs1.z |
|- .0. = ( 0g ` G ) |
| 4 |
|
ncvs1.s |
|- .x. = ( .s ` G ) |
| 5 |
|
ncvs1.f |
|- F = ( Scalar ` G ) |
| 6 |
|
ncvs1.k |
|- K = ( Base ` F ) |
| 7 |
|
simp1 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> G e. ( NrmVec i^i CVec ) ) |
| 8 |
|
simp3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. K ) |
| 9 |
|
elin |
|- ( G e. ( NrmVec i^i CVec ) <-> ( G e. NrmVec /\ G e. CVec ) ) |
| 10 |
|
nvcnlm |
|- ( G e. NrmVec -> G e. NrmMod ) |
| 11 |
|
nlmngp |
|- ( G e. NrmMod -> G e. NrmGrp ) |
| 12 |
10 11
|
syl |
|- ( G e. NrmVec -> G e. NrmGrp ) |
| 13 |
12
|
adantr |
|- ( ( G e. NrmVec /\ G e. CVec ) -> G e. NrmGrp ) |
| 14 |
9 13
|
sylbi |
|- ( G e. ( NrmVec i^i CVec ) -> G e. NrmGrp ) |
| 15 |
|
simpl |
|- ( ( A e. X /\ A =/= .0. ) -> A e. X ) |
| 16 |
14 15
|
anim12i |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( G e. NrmGrp /\ A e. X ) ) |
| 17 |
1 2
|
nmcl |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |
| 18 |
16 17
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( N ` A ) e. RR ) |
| 19 |
1 2 3
|
nmeq0 |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |
| 20 |
19
|
bicomd |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( A = .0. <-> ( N ` A ) = 0 ) ) |
| 21 |
14 20
|
sylan |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A = .0. <-> ( N ` A ) = 0 ) ) |
| 22 |
21
|
necon3bid |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A =/= .0. <-> ( N ` A ) =/= 0 ) ) |
| 23 |
22
|
biimpd |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X ) -> ( A =/= .0. -> ( N ` A ) =/= 0 ) ) |
| 24 |
23
|
impr |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( N ` A ) =/= 0 ) |
| 25 |
18 24
|
rereccld |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( 1 / ( N ` A ) ) e. RR ) |
| 26 |
25
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. RR ) |
| 27 |
8 26
|
elind |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( 1 / ( N ` A ) ) e. ( K i^i RR ) ) |
| 28 |
|
1re |
|- 1 e. RR |
| 29 |
|
0le1 |
|- 0 <_ 1 |
| 30 |
28 29
|
pm3.2i |
|- ( 1 e. RR /\ 0 <_ 1 ) |
| 31 |
30
|
a1i |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( 1 e. RR /\ 0 <_ 1 ) ) |
| 32 |
|
simprr |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> A =/= .0. ) |
| 33 |
1 2 3
|
nmgt0 |
|- ( ( G e. NrmGrp /\ A e. X ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) |
| 34 |
16 33
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( A =/= .0. <-> 0 < ( N ` A ) ) ) |
| 35 |
32 34
|
mpbid |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> 0 < ( N ` A ) ) |
| 36 |
31 18 35
|
jca32 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) ) -> ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) ) |
| 37 |
36
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) ) |
| 38 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) -> 0 <_ ( 1 / ( N ` A ) ) ) |
| 39 |
37 38
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> 0 <_ ( 1 / ( N ` A ) ) ) |
| 40 |
|
simp2l |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> A e. X ) |
| 41 |
1 2 4 5 6
|
ncvsge0 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( ( 1 / ( N ` A ) ) e. ( K i^i RR ) /\ 0 <_ ( 1 / ( N ` A ) ) ) /\ A e. X ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) |
| 42 |
7 27 39 40 41
|
syl121anc |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) |
| 43 |
16
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( G e. NrmGrp /\ A e. X ) ) |
| 44 |
43 17
|
syl |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) e. RR ) |
| 45 |
44
|
recnd |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) e. CC ) |
| 46 |
24
|
3adant3 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` A ) =/= 0 ) |
| 47 |
45 46
|
recid2d |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) = 1 ) |
| 48 |
42 47
|
eqtrd |
|- ( ( G e. ( NrmVec i^i CVec ) /\ ( A e. X /\ A =/= .0. ) /\ ( 1 / ( N ` A ) ) e. K ) -> ( N ` ( ( 1 / ( N ` A ) ) .x. A ) ) = 1 ) |