Metamath Proof Explorer


Theorem ncvsge0

Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V=BaseW
ncvsprp.n N=normW
ncvsprp.s ·˙=W
ncvsprp.f F=ScalarW
ncvsprp.k K=BaseF
Assertion ncvsge0 WNrmVecℂVecAK0ABVNA·˙B=ANB

Proof

Step Hyp Ref Expression
1 ncvsprp.v V=BaseW
2 ncvsprp.n N=normW
3 ncvsprp.s ·˙=W
4 ncvsprp.f F=ScalarW
5 ncvsprp.k K=BaseF
6 elinel1 AKAK
7 6 adantr AK0AAK
8 1 2 3 4 5 ncvsprp WNrmVecℂVecAKBVNA·˙B=ANB
9 7 8 syl3an2 WNrmVecℂVecAK0ABVNA·˙B=ANB
10 elinel2 AKA
11 absid A0AA=A
12 10 11 sylan AK0AA=A
13 12 3ad2ant2 WNrmVecℂVecAK0ABVA=A
14 13 oveq1d WNrmVecℂVecAK0ABVANB=ANB
15 9 14 eqtrd WNrmVecℂVecAK0ABVNA·˙B=ANB