| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvsprp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ncvsprp.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 3 |
|
ncvsprp.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
ncvsdif.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 5 |
|
elin |
⊢ ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec ) ) |
| 6 |
|
id |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec ) |
| 7 |
6
|
cvsclm |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod ) |
| 8 |
5 7
|
simplbiim |
⊢ ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) → 𝑊 ∈ ℂMod ) |
| 9 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 11 |
1 4 9 10 3
|
clmvsubval |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) |
| 13 |
8 12
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
| 15 |
|
nvcnlm |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) |
| 16 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
| 17 |
15 16
|
syl |
⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec ) → 𝑊 ∈ NrmGrp ) |
| 19 |
5 18
|
sylbi |
⊢ ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) → 𝑊 ∈ NrmGrp ) |
| 20 |
1 2 9
|
nmsub |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) ) ) |
| 21 |
19 20
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) ) ) |
| 22 |
8
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 23 |
|
simp3 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
| 24 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 25 |
1 4 9 10 3
|
clmvsubval |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) = ( 𝐵 + ( - 1 · 𝐴 ) ) ) |
| 26 |
22 23 24 25
|
syl3anc |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) = ( 𝐵 + ( - 1 · 𝐴 ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) ) = ( 𝑁 ‘ ( 𝐵 + ( - 1 · 𝐴 ) ) ) ) |
| 28 |
14 21 27
|
3eqtrd |
⊢ ( ( 𝑊 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐵 + ( - 1 · 𝐴 ) ) ) ) |