| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvsprp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ncvsprp.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | ncvsprp.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | ncvsdif.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 5 |  | elin | ⊢ ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ↔  ( 𝑊  ∈  NrmVec  ∧  𝑊  ∈  ℂVec ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑊  ∈  ℂVec  →  𝑊  ∈  ℂVec ) | 
						
							| 7 | 6 | cvsclm | ⊢ ( 𝑊  ∈  ℂVec  →  𝑊  ∈  ℂMod ) | 
						
							| 8 | 5 7 | simplbiim | ⊢ ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  →  𝑊  ∈  ℂMod ) | 
						
							| 9 |  | eqid | ⊢ ( -g ‘ 𝑊 )  =  ( -g ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 11 | 1 4 9 10 3 | clmvsubval | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 )  =  ( 𝐴  +  ( - 1  ·  𝐵 ) ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  +  ( - 1  ·  𝐵 ) )  =  ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) | 
						
							| 13 | 8 12 | syl3an1 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  +  ( - 1  ·  𝐵 ) )  =  ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  +  ( - 1  ·  𝐵 ) ) )  =  ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) ) | 
						
							| 15 |  | nvcnlm | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  NrmMod ) | 
						
							| 16 |  | nlmngp | ⊢ ( 𝑊  ∈  NrmMod  →  𝑊  ∈  NrmGrp ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  NrmGrp ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑊  ∈  ℂVec )  →  𝑊  ∈  NrmGrp ) | 
						
							| 19 | 5 18 | sylbi | ⊢ ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  →  𝑊  ∈  NrmGrp ) | 
						
							| 20 | 1 2 9 | nmsub | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) )  =  ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) ) ) | 
						
							| 21 | 19 20 | syl3an1 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) )  =  ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) ) ) | 
						
							| 22 | 8 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝑊  ∈  ℂMod ) | 
						
							| 23 |  | simp3 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  𝑉 ) | 
						
							| 24 |  | simp2 | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 25 | 1 4 9 10 3 | clmvsubval | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 )  =  ( 𝐵  +  ( - 1  ·  𝐴 ) ) ) | 
						
							| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 )  =  ( 𝐵  +  ( - 1  ·  𝐴 ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝐴 ) )  =  ( 𝑁 ‘ ( 𝐵  +  ( - 1  ·  𝐴 ) ) ) ) | 
						
							| 28 | 14 21 27 | 3eqtrd | ⊢ ( ( 𝑊  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ ( 𝐴  +  ( - 1  ·  𝐵 ) ) )  =  ( 𝑁 ‘ ( 𝐵  +  ( - 1  ·  𝐴 ) ) ) ) |