| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablgrp |
|- ( x e. Abel -> x e. Grp ) |
| 2 |
1
|
ssriv |
|- Abel C_ Grp |
| 3 |
|
imass2 |
|- ( Abel C_ Grp -> ( Base " Abel ) C_ ( Base " Grp ) ) |
| 4 |
2 3
|
ax-mp |
|- ( Base " Abel ) C_ ( Base " Grp ) |
| 5 |
|
isnumbasabl |
|- ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Abel ) ) |
| 6 |
5
|
biimpi |
|- ( S e. dom card -> ( S u. ( har ` S ) ) e. ( Base " Abel ) ) |
| 7 |
4 6
|
sselid |
|- ( S e. dom card -> ( S u. ( har ` S ) ) e. ( Base " Grp ) ) |
| 8 |
|
isnumbasgrplem2 |
|- ( ( S u. ( har ` S ) ) e. ( Base " Grp ) -> S e. dom card ) |
| 9 |
7 8
|
impbii |
|- ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Grp ) ) |