Metamath Proof Explorer


Theorem isnumbasgrp

Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of a group. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion isnumbasgrp
|- ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Grp ) )

Proof

Step Hyp Ref Expression
1 ablgrp
 |-  ( x e. Abel -> x e. Grp )
2 1 ssriv
 |-  Abel C_ Grp
3 imass2
 |-  ( Abel C_ Grp -> ( Base " Abel ) C_ ( Base " Grp ) )
4 2 3 ax-mp
 |-  ( Base " Abel ) C_ ( Base " Grp )
5 isnumbasabl
 |-  ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Abel ) )
6 5 biimpi
 |-  ( S e. dom card -> ( S u. ( har ` S ) ) e. ( Base " Abel ) )
7 4 6 sselid
 |-  ( S e. dom card -> ( S u. ( har ` S ) ) e. ( Base " Grp ) )
8 isnumbasgrplem2
 |-  ( ( S u. ( har ` S ) ) e. ( Base " Grp ) -> S e. dom card )
9 7 8 impbii
 |-  ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Grp ) )