| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablgrp |  |-  ( x e. Abel -> x e. Grp ) | 
						
							| 2 | 1 | ssriv |  |-  Abel C_ Grp | 
						
							| 3 |  | imass2 |  |-  ( Abel C_ Grp -> ( Base " Abel ) C_ ( Base " Grp ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( Base " Abel ) C_ ( Base " Grp ) | 
						
							| 5 |  | isnumbasabl |  |-  ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Abel ) ) | 
						
							| 6 | 5 | biimpi |  |-  ( S e. dom card -> ( S u. ( har ` S ) ) e. ( Base " Abel ) ) | 
						
							| 7 | 4 6 | sselid |  |-  ( S e. dom card -> ( S u. ( har ` S ) ) e. ( Base " Grp ) ) | 
						
							| 8 |  | isnumbasgrplem2 |  |-  ( ( S u. ( har ` S ) ) e. ( Base " Grp ) -> S e. dom card ) | 
						
							| 9 | 7 8 | impbii |  |-  ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Grp ) ) |