Metamath Proof Explorer


Theorem isnumbasabl

Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion isnumbasabl
|- ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Abel ) )

Proof

Step Hyp Ref Expression
1 harcl
 |-  ( har ` S ) e. On
2 onenon
 |-  ( ( har ` S ) e. On -> ( har ` S ) e. dom card )
3 1 2 ax-mp
 |-  ( har ` S ) e. dom card
4 unnum
 |-  ( ( S e. dom card /\ ( har ` S ) e. dom card ) -> ( S u. ( har ` S ) ) e. dom card )
5 3 4 mpan2
 |-  ( S e. dom card -> ( S u. ( har ` S ) ) e. dom card )
6 ssun2
 |-  ( har ` S ) C_ ( S u. ( har ` S ) )
7 harn0
 |-  ( S e. dom card -> ( har ` S ) =/= (/) )
8 ssn0
 |-  ( ( ( har ` S ) C_ ( S u. ( har ` S ) ) /\ ( har ` S ) =/= (/) ) -> ( S u. ( har ` S ) ) =/= (/) )
9 6 7 8 sylancr
 |-  ( S e. dom card -> ( S u. ( har ` S ) ) =/= (/) )
10 isnumbasgrplem3
 |-  ( ( ( S u. ( har ` S ) ) e. dom card /\ ( S u. ( har ` S ) ) =/= (/) ) -> ( S u. ( har ` S ) ) e. ( Base " Abel ) )
11 5 9 10 syl2anc
 |-  ( S e. dom card -> ( S u. ( har ` S ) ) e. ( Base " Abel ) )
12 ablgrp
 |-  ( x e. Abel -> x e. Grp )
13 12 ssriv
 |-  Abel C_ Grp
14 imass2
 |-  ( Abel C_ Grp -> ( Base " Abel ) C_ ( Base " Grp ) )
15 13 14 ax-mp
 |-  ( Base " Abel ) C_ ( Base " Grp )
16 15 sseli
 |-  ( ( S u. ( har ` S ) ) e. ( Base " Abel ) -> ( S u. ( har ` S ) ) e. ( Base " Grp ) )
17 isnumbasgrplem2
 |-  ( ( S u. ( har ` S ) ) e. ( Base " Grp ) -> S e. dom card )
18 16 17 syl
 |-  ( ( S u. ( har ` S ) ) e. ( Base " Abel ) -> S e. dom card )
19 11 18 impbii
 |-  ( S e. dom card <-> ( S u. ( har ` S ) ) e. ( Base " Abel ) )