Metamath Proof Explorer


Theorem isnumbasabl

Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion isnumbasabl S dom card S har S Base Abel

Proof

Step Hyp Ref Expression
1 harcl har S On
2 onenon har S On har S dom card
3 1 2 ax-mp har S dom card
4 unnum S dom card har S dom card S har S dom card
5 3 4 mpan2 S dom card S har S dom card
6 ssun2 har S S har S
7 harn0 S dom card har S
8 ssn0 har S S har S har S S har S
9 6 7 8 sylancr S dom card S har S
10 isnumbasgrplem3 S har S dom card S har S S har S Base Abel
11 5 9 10 syl2anc S dom card S har S Base Abel
12 ablgrp x Abel x Grp
13 12 ssriv Abel Grp
14 imass2 Abel Grp Base Abel Base Grp
15 13 14 ax-mp Base Abel Base Grp
16 15 sseli S har S Base Abel S har S Base Grp
17 isnumbasgrplem2 S har S Base Grp S dom card
18 16 17 syl S har S Base Abel S dom card
19 11 18 impbii S dom card S har S Base Abel