Step |
Hyp |
Ref |
Expression |
1 |
|
harcl |
⊢ ( har ‘ 𝑆 ) ∈ On |
2 |
|
onenon |
⊢ ( ( har ‘ 𝑆 ) ∈ On → ( har ‘ 𝑆 ) ∈ dom card ) |
3 |
1 2
|
ax-mp |
⊢ ( har ‘ 𝑆 ) ∈ dom card |
4 |
|
unnum |
⊢ ( ( 𝑆 ∈ dom card ∧ ( har ‘ 𝑆 ) ∈ dom card ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ dom card ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ dom card ) |
6 |
|
ssun2 |
⊢ ( har ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) |
7 |
|
harn0 |
⊢ ( 𝑆 ∈ dom card → ( har ‘ 𝑆 ) ≠ ∅ ) |
8 |
|
ssn0 |
⊢ ( ( ( har ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∧ ( har ‘ 𝑆 ) ≠ ∅ ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ≠ ∅ ) |
9 |
6 7 8
|
sylancr |
⊢ ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ≠ ∅ ) |
10 |
|
isnumbasgrplem3 |
⊢ ( ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ dom card ∧ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ≠ ∅ ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) ) |
11 |
5 9 10
|
syl2anc |
⊢ ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) ) |
12 |
|
ablgrp |
⊢ ( 𝑥 ∈ Abel → 𝑥 ∈ Grp ) |
13 |
12
|
ssriv |
⊢ Abel ⊆ Grp |
14 |
|
imass2 |
⊢ ( Abel ⊆ Grp → ( Base “ Abel ) ⊆ ( Base “ Grp ) ) |
15 |
13 14
|
ax-mp |
⊢ ( Base “ Abel ) ⊆ ( Base “ Grp ) |
16 |
15
|
sseli |
⊢ ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Grp ) ) |
17 |
|
isnumbasgrplem2 |
⊢ ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Grp ) → 𝑆 ∈ dom card ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) → 𝑆 ∈ dom card ) |
19 |
11 18
|
impbii |
⊢ ( 𝑆 ∈ dom card ↔ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) ) |