| Step | Hyp | Ref | Expression | 
						
							| 1 |  | harcl | ⊢ ( har ‘ 𝑆 )  ∈  On | 
						
							| 2 |  | onenon | ⊢ ( ( har ‘ 𝑆 )  ∈  On  →  ( har ‘ 𝑆 )  ∈  dom  card ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( har ‘ 𝑆 )  ∈  dom  card | 
						
							| 4 |  | unnum | ⊢ ( ( 𝑆  ∈  dom  card  ∧  ( har ‘ 𝑆 )  ∈  dom  card )  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  dom  card ) | 
						
							| 5 | 3 4 | mpan2 | ⊢ ( 𝑆  ∈  dom  card  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  dom  card ) | 
						
							| 6 |  | ssun2 | ⊢ ( har ‘ 𝑆 )  ⊆  ( 𝑆  ∪  ( har ‘ 𝑆 ) ) | 
						
							| 7 |  | harn0 | ⊢ ( 𝑆  ∈  dom  card  →  ( har ‘ 𝑆 )  ≠  ∅ ) | 
						
							| 8 |  | ssn0 | ⊢ ( ( ( har ‘ 𝑆 )  ⊆  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∧  ( har ‘ 𝑆 )  ≠  ∅ )  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ≠  ∅ ) | 
						
							| 9 | 6 7 8 | sylancr | ⊢ ( 𝑆  ∈  dom  card  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ≠  ∅ ) | 
						
							| 10 |  | isnumbasgrplem3 | ⊢ ( ( ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  dom  card  ∧  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ≠  ∅ )  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Abel ) ) | 
						
							| 11 | 5 9 10 | syl2anc | ⊢ ( 𝑆  ∈  dom  card  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Abel ) ) | 
						
							| 12 |  | ablgrp | ⊢ ( 𝑥  ∈  Abel  →  𝑥  ∈  Grp ) | 
						
							| 13 | 12 | ssriv | ⊢ Abel  ⊆  Grp | 
						
							| 14 |  | imass2 | ⊢ ( Abel  ⊆  Grp  →  ( Base  “  Abel )  ⊆  ( Base  “  Grp ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( Base  “  Abel )  ⊆  ( Base  “  Grp ) | 
						
							| 16 | 15 | sseli | ⊢ ( ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Abel )  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Grp ) ) | 
						
							| 17 |  | isnumbasgrplem2 | ⊢ ( ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Grp )  →  𝑆  ∈  dom  card ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Abel )  →  𝑆  ∈  dom  card ) | 
						
							| 19 | 11 18 | impbii | ⊢ ( 𝑆  ∈  dom  card  ↔  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Abel ) ) |