Metamath Proof Explorer


Theorem isnumbasabl

Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion isnumbasabl ( 𝑆 ∈ dom card ↔ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) )

Proof

Step Hyp Ref Expression
1 harcl ( har ‘ 𝑆 ) ∈ On
2 onenon ( ( har ‘ 𝑆 ) ∈ On → ( har ‘ 𝑆 ) ∈ dom card )
3 1 2 ax-mp ( har ‘ 𝑆 ) ∈ dom card
4 unnum ( ( 𝑆 ∈ dom card ∧ ( har ‘ 𝑆 ) ∈ dom card ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ dom card )
5 3 4 mpan2 ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ dom card )
6 ssun2 ( har ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( har ‘ 𝑆 ) )
7 harn0 ( 𝑆 ∈ dom card → ( har ‘ 𝑆 ) ≠ ∅ )
8 ssn0 ( ( ( har ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∧ ( har ‘ 𝑆 ) ≠ ∅ ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ≠ ∅ )
9 6 7 8 sylancr ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ≠ ∅ )
10 isnumbasgrplem3 ( ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ dom card ∧ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ≠ ∅ ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) )
11 5 9 10 syl2anc ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) )
12 ablgrp ( 𝑥 ∈ Abel → 𝑥 ∈ Grp )
13 12 ssriv Abel ⊆ Grp
14 imass2 ( Abel ⊆ Grp → ( Base “ Abel ) ⊆ ( Base “ Grp ) )
15 13 14 ax-mp ( Base “ Abel ) ⊆ ( Base “ Grp )
16 15 sseli ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Grp ) )
17 isnumbasgrplem2 ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Grp ) → 𝑆 ∈ dom card )
18 16 17 syl ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) → 𝑆 ∈ dom card )
19 11 18 impbii ( 𝑆 ∈ dom card ↔ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) )