| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablgrp |
⊢ ( 𝑥 ∈ Abel → 𝑥 ∈ Grp ) |
| 2 |
1
|
ssriv |
⊢ Abel ⊆ Grp |
| 3 |
|
imass2 |
⊢ ( Abel ⊆ Grp → ( Base “ Abel ) ⊆ ( Base “ Grp ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( Base “ Abel ) ⊆ ( Base “ Grp ) |
| 5 |
|
isnumbasabl |
⊢ ( 𝑆 ∈ dom card ↔ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) ) |
| 6 |
5
|
biimpi |
⊢ ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Abel ) ) |
| 7 |
4 6
|
sselid |
⊢ ( 𝑆 ∈ dom card → ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Grp ) ) |
| 8 |
|
isnumbasgrplem2 |
⊢ ( ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Grp ) → 𝑆 ∈ dom card ) |
| 9 |
7 8
|
impbii |
⊢ ( 𝑆 ∈ dom card ↔ ( 𝑆 ∪ ( har ‘ 𝑆 ) ) ∈ ( Base “ Grp ) ) |