| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablgrp | ⊢ ( 𝑥  ∈  Abel  →  𝑥  ∈  Grp ) | 
						
							| 2 | 1 | ssriv | ⊢ Abel  ⊆  Grp | 
						
							| 3 |  | imass2 | ⊢ ( Abel  ⊆  Grp  →  ( Base  “  Abel )  ⊆  ( Base  “  Grp ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( Base  “  Abel )  ⊆  ( Base  “  Grp ) | 
						
							| 5 |  | isnumbasabl | ⊢ ( 𝑆  ∈  dom  card  ↔  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Abel ) ) | 
						
							| 6 | 5 | biimpi | ⊢ ( 𝑆  ∈  dom  card  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Abel ) ) | 
						
							| 7 | 4 6 | sselid | ⊢ ( 𝑆  ∈  dom  card  →  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Grp ) ) | 
						
							| 8 |  | isnumbasgrplem2 | ⊢ ( ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Grp )  →  𝑆  ∈  dom  card ) | 
						
							| 9 | 7 8 | impbii | ⊢ ( 𝑆  ∈  dom  card  ↔  ( 𝑆  ∪  ( har ‘ 𝑆 ) )  ∈  ( Base  “  Grp ) ) |