| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basfn |
|
| 2 |
|
ssv |
|
| 3 |
|
fvelimab |
|
| 4 |
1 2 3
|
mp2an |
|
| 5 |
|
harcl |
|
| 6 |
|
onenon |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
|
xpnum |
|
| 9 |
7 7 8
|
mp2an |
|
| 10 |
|
ssun1 |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
sseqtrrid |
|
| 13 |
|
fvex |
|
| 14 |
13
|
ssex |
|
| 15 |
12 14
|
syl |
|
| 16 |
7
|
a1i |
|
| 17 |
|
simp1l |
|
| 18 |
12
|
3ad2ant1 |
|
| 19 |
|
simp2 |
|
| 20 |
18 19
|
sseldd |
|
| 21 |
|
ssun2 |
|
| 22 |
21 11
|
sseqtrrid |
|
| 23 |
22
|
3ad2ant1 |
|
| 24 |
|
simp3 |
|
| 25 |
23 24
|
sseldd |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
26 27
|
grpcl |
|
| 29 |
17 20 25 28
|
syl3anc |
|
| 30 |
|
simp1r |
|
| 31 |
29 30
|
eleqtrd |
|
| 32 |
|
simplll |
|
| 33 |
22
|
ad2antrr |
|
| 34 |
|
simprl |
|
| 35 |
33 34
|
sseldd |
|
| 36 |
|
simprr |
|
| 37 |
33 36
|
sseldd |
|
| 38 |
12
|
ad2antrr |
|
| 39 |
|
simplr |
|
| 40 |
38 39
|
sseldd |
|
| 41 |
26 27
|
grplcan |
|
| 42 |
32 35 37 40 41
|
syl13anc |
|
| 43 |
|
simplll |
|
| 44 |
12
|
ad2antrr |
|
| 45 |
|
simprr |
|
| 46 |
44 45
|
sseldd |
|
| 47 |
|
simprl |
|
| 48 |
44 47
|
sseldd |
|
| 49 |
22
|
ad2antrr |
|
| 50 |
|
simplr |
|
| 51 |
49 50
|
sseldd |
|
| 52 |
26 27
|
grprcan |
|
| 53 |
43 46 48 51 52
|
syl13anc |
|
| 54 |
|
harndom |
|
| 55 |
54
|
a1i |
|
| 56 |
15 16 16 31 42 53 55
|
unxpwdom3 |
|
| 57 |
|
wdomnumr |
|
| 58 |
9 57
|
ax-mp |
|
| 59 |
56 58
|
sylib |
|
| 60 |
|
numdom |
|
| 61 |
9 59 60
|
sylancr |
|
| 62 |
61
|
rexlimiva |
|
| 63 |
4 62
|
sylbi |
|