Metamath Proof Explorer


Theorem unxpwdom3

Description: Weaker version of unxpwdom where a function is required only to be cancellative, not an injection. D and B are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into A , each row must hit an element of B ; by column injectivity, each row can be identified in at least one way by the B element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015)MOVABLE

Ref Expression
Hypotheses unxpwdom3.av φAV
unxpwdom3.bv φBW
unxpwdom3.dv φDX
unxpwdom3.ov φaCbDa+˙bAB
unxpwdom3.lc φaCbDcDa+˙b=a+˙cb=c
unxpwdom3.rc φdDaCcCc+˙d=a+˙dc=a
unxpwdom3.ni φ¬DA
Assertion unxpwdom3 φC*D×B

Proof

Step Hyp Ref Expression
1 unxpwdom3.av φAV
2 unxpwdom3.bv φBW
3 unxpwdom3.dv φDX
4 unxpwdom3.ov φaCbDa+˙bAB
5 unxpwdom3.lc φaCbDcDa+˙b=a+˙cb=c
6 unxpwdom3.rc φdDaCcCc+˙d=a+˙dc=a
7 unxpwdom3.ni φ¬DA
8 3 2 xpexd φD×BV
9 simprr φaCdDa+˙dBa+˙dB
10 simplr φaCdDa+˙dBaC
11 6 an4s φaCdDcCc+˙d=a+˙dc=a
12 11 anassrs φaCdDcCc+˙d=a+˙dc=a
13 12 adantlrr φaCdDa+˙dBcCc+˙d=a+˙dc=a
14 10 13 riota5 φaCdDa+˙dBιcC|c+˙d=a+˙d=a
15 14 eqcomd φaCdDa+˙dBa=ιcC|c+˙d=a+˙d
16 eqeq2 y=a+˙dc+˙d=yc+˙d=a+˙d
17 16 riotabidv y=a+˙dιcC|c+˙d=y=ιcC|c+˙d=a+˙d
18 17 rspceeqv a+˙dBa=ιcC|c+˙d=a+˙dyBa=ιcC|c+˙d=y
19 9 15 18 syl2anc φaCdDa+˙dByBa=ιcC|c+˙d=y
20 7 adantr φaC¬DA
21 1 ad2antrr φaCdD¬a+˙dBAV
22 oveq2 d=ba+˙d=a+˙b
23 22 eleq1d d=ba+˙dBa+˙bB
24 23 notbid d=b¬a+˙dB¬a+˙bB
25 24 rspcv bDdD¬a+˙dB¬a+˙bB
26 25 adantl φaCbDdD¬a+˙dB¬a+˙bB
27 4 3expa φaCbDa+˙bAB
28 elun a+˙bABa+˙bAa+˙bB
29 27 28 sylib φaCbDa+˙bAa+˙bB
30 29 orcomd φaCbDa+˙bBa+˙bA
31 30 ord φaCbD¬a+˙bBa+˙bA
32 26 31 syld φaCbDdD¬a+˙dBa+˙bA
33 32 impancom φaCdD¬a+˙dBbDa+˙bA
34 5 ex φaCbDcDa+˙b=a+˙cb=c
35 34 adantr φaCdD¬a+˙dBbDcDa+˙b=a+˙cb=c
36 33 35 dom2d φaCdD¬a+˙dBAVDA
37 21 36 mpd φaCdD¬a+˙dBDA
38 20 37 mtand φaC¬dD¬a+˙dB
39 dfrex2 dDa+˙dB¬dD¬a+˙dB
40 38 39 sylibr φaCdDa+˙dB
41 19 40 reximddv φaCdDyBa=ιcC|c+˙d=y
42 vex dV
43 vex yV
44 42 43 op1std x=dy1stx=d
45 44 oveq2d x=dyc+˙1stx=c+˙d
46 42 43 op2ndd x=dy2ndx=y
47 45 46 eqeq12d x=dyc+˙1stx=2ndxc+˙d=y
48 47 riotabidv x=dyιcC|c+˙1stx=2ndx=ιcC|c+˙d=y
49 48 eqeq2d x=dya=ιcC|c+˙1stx=2ndxa=ιcC|c+˙d=y
50 49 rexxp xD×Ba=ιcC|c+˙1stx=2ndxdDyBa=ιcC|c+˙d=y
51 41 50 sylibr φaCxD×Ba=ιcC|c+˙1stx=2ndx
52 8 51 wdomd φC*D×B