Step |
Hyp |
Ref |
Expression |
1 |
|
unxpwdom3.av |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
unxpwdom3.bv |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
unxpwdom3.dv |
⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) |
4 |
|
unxpwdom3.ov |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑎 + 𝑏 ) ∈ ( 𝐴 ∪ 𝐵 ) ) |
5 |
|
unxpwdom3.lc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑏 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) → ( ( 𝑎 + 𝑏 ) = ( 𝑎 + 𝑐 ) ↔ 𝑏 = 𝑐 ) ) |
6 |
|
unxpwdom3.rc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ↔ 𝑐 = 𝑎 ) ) |
7 |
|
unxpwdom3.ni |
⊢ ( 𝜑 → ¬ 𝐷 ≼ 𝐴 ) |
8 |
3 2
|
xpexd |
⊢ ( 𝜑 → ( 𝐷 × 𝐵 ) ∈ V ) |
9 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐷 ∧ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) ) → ( 𝑎 + 𝑑 ) ∈ 𝐵 ) |
10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐷 ∧ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) ) → 𝑎 ∈ 𝐶 ) |
11 |
6
|
an4s |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ↔ 𝑐 = 𝑎 ) ) |
12 |
11
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ 𝑑 ∈ 𝐷 ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ↔ 𝑐 = 𝑎 ) ) |
13 |
12
|
adantlrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐷 ∧ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ↔ 𝑐 = 𝑎 ) ) |
14 |
10 13
|
riota5 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐷 ∧ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) ) → ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ) = 𝑎 ) |
15 |
14
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐷 ∧ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) ) → 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ) ) |
16 |
|
eqeq2 |
⊢ ( 𝑦 = ( 𝑎 + 𝑑 ) → ( ( 𝑐 + 𝑑 ) = 𝑦 ↔ ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ) ) |
17 |
16
|
riotabidv |
⊢ ( 𝑦 = ( 𝑎 + 𝑑 ) → ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = 𝑦 ) = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ) ) |
18 |
17
|
rspceeqv |
⊢ ( ( ( 𝑎 + 𝑑 ) ∈ 𝐵 ∧ 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = ( 𝑎 + 𝑑 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = 𝑦 ) ) |
19 |
9 15 18
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐷 ∧ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝐵 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = 𝑦 ) ) |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ¬ 𝐷 ≼ 𝐴 ) |
21 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
22 |
|
oveq2 |
⊢ ( 𝑑 = 𝑏 → ( 𝑎 + 𝑑 ) = ( 𝑎 + 𝑏 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑎 + 𝑑 ) ∈ 𝐵 ↔ ( 𝑎 + 𝑏 ) ∈ 𝐵 ) ) |
24 |
23
|
notbid |
⊢ ( 𝑑 = 𝑏 → ( ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ↔ ¬ ( 𝑎 + 𝑏 ) ∈ 𝐵 ) ) |
25 |
24
|
rspcv |
⊢ ( 𝑏 ∈ 𝐷 → ( ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 → ¬ ( 𝑎 + 𝑏 ) ∈ 𝐵 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐷 ) → ( ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 → ¬ ( 𝑎 + 𝑏 ) ∈ 𝐵 ) ) |
27 |
4
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑎 + 𝑏 ) ∈ ( 𝐴 ∪ 𝐵 ) ) |
28 |
|
elun |
⊢ ( ( 𝑎 + 𝑏 ) ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( ( 𝑎 + 𝑏 ) ∈ 𝐴 ∨ ( 𝑎 + 𝑏 ) ∈ 𝐵 ) ) |
29 |
27 28
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑎 + 𝑏 ) ∈ 𝐴 ∨ ( 𝑎 + 𝑏 ) ∈ 𝐵 ) ) |
30 |
29
|
orcomd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑎 + 𝑏 ) ∈ 𝐵 ∨ ( 𝑎 + 𝑏 ) ∈ 𝐴 ) ) |
31 |
30
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐷 ) → ( ¬ ( 𝑎 + 𝑏 ) ∈ 𝐵 → ( 𝑎 + 𝑏 ) ∈ 𝐴 ) ) |
32 |
26 31
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ 𝑏 ∈ 𝐷 ) → ( ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 → ( 𝑎 + 𝑏 ) ∈ 𝐴 ) ) |
33 |
32
|
impancom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) → ( 𝑏 ∈ 𝐷 → ( 𝑎 + 𝑏 ) ∈ 𝐴 ) ) |
34 |
5
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑏 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) → ( ( 𝑎 + 𝑏 ) = ( 𝑎 + 𝑐 ) ↔ 𝑏 = 𝑐 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) → ( ( 𝑏 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) → ( ( 𝑎 + 𝑏 ) = ( 𝑎 + 𝑐 ) ↔ 𝑏 = 𝑐 ) ) ) |
36 |
33 35
|
dom2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) → ( 𝐴 ∈ 𝑉 → 𝐷 ≼ 𝐴 ) ) |
37 |
21 36
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) ∧ ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) → 𝐷 ≼ 𝐴 ) |
38 |
20 37
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ¬ ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) |
39 |
|
dfrex2 |
⊢ ( ∃ 𝑑 ∈ 𝐷 ( 𝑎 + 𝑑 ) ∈ 𝐵 ↔ ¬ ∀ 𝑑 ∈ 𝐷 ¬ ( 𝑎 + 𝑑 ) ∈ 𝐵 ) |
40 |
38 39
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ∃ 𝑑 ∈ 𝐷 ( 𝑎 + 𝑑 ) ∈ 𝐵 ) |
41 |
19 40
|
reximddv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ∃ 𝑑 ∈ 𝐷 ∃ 𝑦 ∈ 𝐵 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = 𝑦 ) ) |
42 |
|
vex |
⊢ 𝑑 ∈ V |
43 |
|
vex |
⊢ 𝑦 ∈ V |
44 |
42 43
|
op1std |
⊢ ( 𝑥 = 〈 𝑑 , 𝑦 〉 → ( 1st ‘ 𝑥 ) = 𝑑 ) |
45 |
44
|
oveq2d |
⊢ ( 𝑥 = 〈 𝑑 , 𝑦 〉 → ( 𝑐 + ( 1st ‘ 𝑥 ) ) = ( 𝑐 + 𝑑 ) ) |
46 |
42 43
|
op2ndd |
⊢ ( 𝑥 = 〈 𝑑 , 𝑦 〉 → ( 2nd ‘ 𝑥 ) = 𝑦 ) |
47 |
45 46
|
eqeq12d |
⊢ ( 𝑥 = 〈 𝑑 , 𝑦 〉 → ( ( 𝑐 + ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ 𝑥 ) ↔ ( 𝑐 + 𝑑 ) = 𝑦 ) ) |
48 |
47
|
riotabidv |
⊢ ( 𝑥 = 〈 𝑑 , 𝑦 〉 → ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ 𝑥 ) ) = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = 𝑦 ) ) |
49 |
48
|
eqeq2d |
⊢ ( 𝑥 = 〈 𝑑 , 𝑦 〉 → ( 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ 𝑥 ) ) ↔ 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = 𝑦 ) ) ) |
50 |
49
|
rexxp |
⊢ ( ∃ 𝑥 ∈ ( 𝐷 × 𝐵 ) 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ 𝑥 ) ) ↔ ∃ 𝑑 ∈ 𝐷 ∃ 𝑦 ∈ 𝐵 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + 𝑑 ) = 𝑦 ) ) |
51 |
41 50
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ∃ 𝑥 ∈ ( 𝐷 × 𝐵 ) 𝑎 = ( ℩ 𝑐 ∈ 𝐶 ( 𝑐 + ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ 𝑥 ) ) ) |
52 |
8 51
|
wdomd |
⊢ ( 𝜑 → 𝐶 ≼* ( 𝐷 × 𝐵 ) ) |