Metamath Proof Explorer


Theorem unxpwdom

Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion unxpwdom A×ABCA*BAC

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex2i A×ABCBCV
3 domeng BCVA×ABCxA×AxxBC
4 2 3 syl A×ABCA×ABCxA×AxxBC
5 4 ibi A×ABCxA×AxxBC
6 simprl A×ABCA×AxxBCA×Ax
7 indi xBC=xBxC
8 simprr A×ABCA×AxxBCxBC
9 df-ss xBCxBC=x
10 8 9 sylib A×ABCA×AxxBCxBC=x
11 7 10 eqtr3id A×ABCA×AxxBCxBxC=x
12 6 11 breqtrrd A×ABCA×AxxBCA×AxBxC
13 unxpwdom2 A×AxBxCA*xBAxC
14 12 13 syl A×ABCA×AxxBCA*xBAxC
15 ssun1 BBC
16 2 adantr A×ABCA×AxxBCBCV
17 ssexg BBCBCVBV
18 15 16 17 sylancr A×ABCA×AxxBCBV
19 inss2 xBB
20 ssdomg BVxBBxBB
21 18 19 20 mpisyl A×ABCA×AxxBCxBB
22 domwdom xBBxB*B
23 21 22 syl A×ABCA×AxxBCxB*B
24 wdomtr A*xBxB*BA*B
25 24 expcom xB*BA*xBA*B
26 23 25 syl A×ABCA×AxxBCA*xBA*B
27 ssun2 CBC
28 ssexg CBCBCVCV
29 27 16 28 sylancr A×ABCA×AxxBCCV
30 inss2 xCC
31 ssdomg CVxCCxCC
32 29 30 31 mpisyl A×ABCA×AxxBCxCC
33 domtr AxCxCCAC
34 33 expcom xCCAxCAC
35 32 34 syl A×ABCA×AxxBCAxCAC
36 26 35 orim12d A×ABCA×AxxBCA*xBAxCA*BAC
37 14 36 mpd A×ABCA×AxxBCA*BAC
38 5 37 exlimddv A×ABCA*BAC