Step |
Hyp |
Ref |
Expression |
1 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
2 |
|
basfn |
|- Base Fn _V |
3 |
|
ssv |
|- Grp C_ _V |
4 |
|
fvelimab |
|- ( ( Base Fn _V /\ Grp C_ _V ) -> ( x e. ( Base " Grp ) <-> E. y e. Grp ( Base ` y ) = x ) ) |
5 |
2 3 4
|
mp2an |
|- ( x e. ( Base " Grp ) <-> E. y e. Grp ( Base ` y ) = x ) |
6 |
|
eqid |
|- ( Base ` y ) = ( Base ` y ) |
7 |
6
|
grpbn0 |
|- ( y e. Grp -> ( Base ` y ) =/= (/) ) |
8 |
|
neeq1 |
|- ( ( Base ` y ) = x -> ( ( Base ` y ) =/= (/) <-> x =/= (/) ) ) |
9 |
7 8
|
syl5ibcom |
|- ( y e. Grp -> ( ( Base ` y ) = x -> x =/= (/) ) ) |
10 |
9
|
rexlimiv |
|- ( E. y e. Grp ( Base ` y ) = x -> x =/= (/) ) |
11 |
5 10
|
sylbi |
|- ( x e. ( Base " Grp ) -> x =/= (/) ) |
12 |
11
|
adantl |
|- ( ( dom card = _V /\ x e. ( Base " Grp ) ) -> x =/= (/) ) |
13 |
|
vex |
|- x e. _V |
14 |
12 13
|
jctil |
|- ( ( dom card = _V /\ x e. ( Base " Grp ) ) -> ( x e. _V /\ x =/= (/) ) ) |
15 |
|
ablgrp |
|- ( x e. Abel -> x e. Grp ) |
16 |
15
|
ssriv |
|- Abel C_ Grp |
17 |
|
imass2 |
|- ( Abel C_ Grp -> ( Base " Abel ) C_ ( Base " Grp ) ) |
18 |
16 17
|
ax-mp |
|- ( Base " Abel ) C_ ( Base " Grp ) |
19 |
|
simprl |
|- ( ( dom card = _V /\ ( x e. _V /\ x =/= (/) ) ) -> x e. _V ) |
20 |
|
simpl |
|- ( ( dom card = _V /\ ( x e. _V /\ x =/= (/) ) ) -> dom card = _V ) |
21 |
19 20
|
eleqtrrd |
|- ( ( dom card = _V /\ ( x e. _V /\ x =/= (/) ) ) -> x e. dom card ) |
22 |
|
simprr |
|- ( ( dom card = _V /\ ( x e. _V /\ x =/= (/) ) ) -> x =/= (/) ) |
23 |
|
isnumbasgrplem3 |
|- ( ( x e. dom card /\ x =/= (/) ) -> x e. ( Base " Abel ) ) |
24 |
21 22 23
|
syl2anc |
|- ( ( dom card = _V /\ ( x e. _V /\ x =/= (/) ) ) -> x e. ( Base " Abel ) ) |
25 |
18 24
|
sselid |
|- ( ( dom card = _V /\ ( x e. _V /\ x =/= (/) ) ) -> x e. ( Base " Grp ) ) |
26 |
14 25
|
impbida |
|- ( dom card = _V -> ( x e. ( Base " Grp ) <-> ( x e. _V /\ x =/= (/) ) ) ) |
27 |
|
eldifsn |
|- ( x e. ( _V \ { (/) } ) <-> ( x e. _V /\ x =/= (/) ) ) |
28 |
26 27
|
bitr4di |
|- ( dom card = _V -> ( x e. ( Base " Grp ) <-> x e. ( _V \ { (/) } ) ) ) |
29 |
28
|
eqrdv |
|- ( dom card = _V -> ( Base " Grp ) = ( _V \ { (/) } ) ) |
30 |
|
fvex |
|- ( har ` x ) e. _V |
31 |
13 30
|
unex |
|- ( x u. ( har ` x ) ) e. _V |
32 |
|
ssun2 |
|- ( har ` x ) C_ ( x u. ( har ` x ) ) |
33 |
|
harn0 |
|- ( x e. _V -> ( har ` x ) =/= (/) ) |
34 |
13 33
|
ax-mp |
|- ( har ` x ) =/= (/) |
35 |
|
ssn0 |
|- ( ( ( har ` x ) C_ ( x u. ( har ` x ) ) /\ ( har ` x ) =/= (/) ) -> ( x u. ( har ` x ) ) =/= (/) ) |
36 |
32 34 35
|
mp2an |
|- ( x u. ( har ` x ) ) =/= (/) |
37 |
|
eldifsn |
|- ( ( x u. ( har ` x ) ) e. ( _V \ { (/) } ) <-> ( ( x u. ( har ` x ) ) e. _V /\ ( x u. ( har ` x ) ) =/= (/) ) ) |
38 |
31 36 37
|
mpbir2an |
|- ( x u. ( har ` x ) ) e. ( _V \ { (/) } ) |
39 |
38
|
a1i |
|- ( ( Base " Grp ) = ( _V \ { (/) } ) -> ( x u. ( har ` x ) ) e. ( _V \ { (/) } ) ) |
40 |
|
id |
|- ( ( Base " Grp ) = ( _V \ { (/) } ) -> ( Base " Grp ) = ( _V \ { (/) } ) ) |
41 |
39 40
|
eleqtrrd |
|- ( ( Base " Grp ) = ( _V \ { (/) } ) -> ( x u. ( har ` x ) ) e. ( Base " Grp ) ) |
42 |
|
isnumbasgrp |
|- ( x e. dom card <-> ( x u. ( har ` x ) ) e. ( Base " Grp ) ) |
43 |
41 42
|
sylibr |
|- ( ( Base " Grp ) = ( _V \ { (/) } ) -> x e. dom card ) |
44 |
13
|
a1i |
|- ( ( Base " Grp ) = ( _V \ { (/) } ) -> x e. _V ) |
45 |
43 44
|
2thd |
|- ( ( Base " Grp ) = ( _V \ { (/) } ) -> ( x e. dom card <-> x e. _V ) ) |
46 |
45
|
eqrdv |
|- ( ( Base " Grp ) = ( _V \ { (/) } ) -> dom card = _V ) |
47 |
29 46
|
impbii |
|- ( dom card = _V <-> ( Base " Grp ) = ( _V \ { (/) } ) ) |
48 |
1 47
|
bitri |
|- ( CHOICE <-> ( Base " Grp ) = ( _V \ { (/) } ) ) |