Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isomgrsymb | |- ( ( A e. UHGraph /\ B e. UHGraph ) -> ( A IsomGr B <-> B IsomGr A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomgrsym | |- ( ( A e. UHGraph /\ B e. UHGraph ) -> ( A IsomGr B -> B IsomGr A ) ) |
|
2 | isomgrsym | |- ( ( B e. UHGraph /\ A e. UHGraph ) -> ( B IsomGr A -> A IsomGr B ) ) |
|
3 | 2 | ancoms | |- ( ( A e. UHGraph /\ B e. UHGraph ) -> ( B IsomGr A -> A IsomGr B ) ) |
4 | 1 3 | impbid | |- ( ( A e. UHGraph /\ B e. UHGraph ) -> ( A IsomGr B <-> B IsomGr A ) ) |