Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isomgrsymb | ⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴 IsomGr 𝐵 ↔ 𝐵 IsomGr 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomgrsym | ⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴 IsomGr 𝐵 → 𝐵 IsomGr 𝐴 ) ) | |
2 | isomgrsym | ⊢ ( ( 𝐵 ∈ UHGraph ∧ 𝐴 ∈ UHGraph ) → ( 𝐵 IsomGr 𝐴 → 𝐴 IsomGr 𝐵 ) ) | |
3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐵 IsomGr 𝐴 → 𝐴 IsomGr 𝐵 ) ) |
4 | 1 3 | impbid | ⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴 IsomGr 𝐵 ↔ 𝐵 IsomGr 𝐴 ) ) |