Metamath Proof Explorer


Theorem isomgrsymb

Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrsymb ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴 IsomGr 𝐵𝐵 IsomGr 𝐴 ) )

Proof

Step Hyp Ref Expression
1 isomgrsym ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴 IsomGr 𝐵𝐵 IsomGr 𝐴 ) )
2 isomgrsym ( ( 𝐵 ∈ UHGraph ∧ 𝐴 ∈ UHGraph ) → ( 𝐵 IsomGr 𝐴𝐴 IsomGr 𝐵 ) )
3 2 ancoms ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐵 IsomGr 𝐴𝐴 IsomGr 𝐵 ) )
4 1 3 impbid ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴 IsomGr 𝐵𝐵 IsomGr 𝐴 ) )