Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐴 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐵 ) = ( Vtx ‘ 𝐵 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐴 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐵 ) = ( iEdg ‘ 𝐵 ) |
5 |
1 2 3 4
|
isomgr |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
6 |
|
vex |
⊢ 𝑓 ∈ V |
7 |
6
|
cnvex |
⊢ ◡ 𝑓 ∈ V |
8 |
7
|
a1i |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ◡ 𝑓 ∈ V ) |
9 |
|
f1ocnv |
⊢ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ◡ 𝑓 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ◡ 𝑓 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ◡ 𝑓 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ) |
12 |
|
vex |
⊢ 𝑔 ∈ V |
13 |
12
|
cnvex |
⊢ ◡ 𝑔 ∈ V |
14 |
13
|
a1i |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ◡ 𝑔 ∈ V ) |
15 |
|
f1ocnv |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) → ◡ 𝑔 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ◡ 𝑔 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ◡ 𝑔 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) |
18 |
|
f1ocnvdm |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ◡ 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐴 ) ) |
19 |
18
|
3ad2antl2 |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ◡ 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐴 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑖 = ( ◡ 𝑔 ‘ 𝑗 ) → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) |
21 |
20
|
imaeq2d |
⊢ ( 𝑖 = ( ◡ 𝑔 ‘ 𝑗 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) |
22 |
|
2fveq3 |
⊢ ( 𝑖 = ( ◡ 𝑔 ‘ 𝑗 ) → ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑖 = ( ◡ 𝑔 ‘ 𝑗 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) ∧ 𝑖 = ( ◡ 𝑔 ‘ 𝑗 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) ) |
25 |
19 24
|
rspcdv |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) ) |
26 |
|
f1ocnvfv2 |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = 𝑗 ) |
27 |
26
|
3ad2antl2 |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = 𝑗 ) |
28 |
27
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) |
29 |
28
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) |
30 |
|
f1of1 |
⊢ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → 𝑓 : ( Vtx ‘ 𝐴 ) –1-1→ ( Vtx ‘ 𝐵 ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → 𝑓 : ( Vtx ‘ 𝐴 ) –1-1→ ( Vtx ‘ 𝐵 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → 𝑓 : ( Vtx ‘ 𝐴 ) –1-1→ ( Vtx ‘ 𝐵 ) ) |
33 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → 𝐴 ∈ UHGraph ) |
34 |
1 3
|
uhgrss |
⊢ ( ( 𝐴 ∈ UHGraph ∧ ( ◡ 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ⊆ ( Vtx ‘ 𝐴 ) ) |
35 |
33 19 34
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ⊆ ( Vtx ‘ 𝐴 ) ) |
36 |
32 35
|
jca |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1→ ( Vtx ‘ 𝐵 ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ⊆ ( Vtx ‘ 𝐴 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1→ ( Vtx ‘ 𝐵 ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ⊆ ( Vtx ‘ 𝐴 ) ) ) |
38 |
|
f1imacnv |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1→ ( Vtx ‘ 𝐵 ) ∧ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ⊆ ( Vtx ‘ 𝐴 ) ) → ( ◡ 𝑓 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) → ( ◡ 𝑓 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) |
40 |
|
imaeq2 |
⊢ ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) → ( ◡ 𝑓 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) → ( ◡ 𝑓 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) |
42 |
39 41
|
eqtr3d |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) ∧ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) |
43 |
42
|
ex |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) |
44 |
29 43
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) |
45 |
25 44
|
syld |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) |
46 |
45
|
ex |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) ) |
47 |
46
|
com23 |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) ) |
48 |
47
|
3exp |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) ) ) ) |
49 |
48
|
com34 |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) ) ) ) |
50 |
49
|
impd |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) ) ) ) |
51 |
50
|
3imp1 |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) |
52 |
51
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ) → ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) |
53 |
52
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) |
54 |
17 53
|
jca |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ( ◡ 𝑔 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) |
55 |
|
f1oeq1 |
⊢ ( ℎ = ◡ 𝑔 → ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ↔ ◡ 𝑔 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ) ) |
56 |
|
fveq1 |
⊢ ( ℎ = ◡ 𝑔 → ( ℎ ‘ 𝑗 ) = ( ◡ 𝑔 ‘ 𝑗 ) ) |
57 |
56
|
fveq2d |
⊢ ( ℎ = ◡ 𝑔 → ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) |
58 |
57
|
eqeq2d |
⊢ ( ℎ = ◡ 𝑔 → ( ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) |
59 |
58
|
ralbidv |
⊢ ( ℎ = ◡ 𝑔 → ( ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) |
60 |
55 59
|
anbi12d |
⊢ ( ℎ = ◡ 𝑔 → ( ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ↔ ( ◡ 𝑔 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ◡ 𝑔 ‘ 𝑗 ) ) ) ) ) |
61 |
14 54 60
|
spcedv |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
62 |
61
|
3exp |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
63 |
62
|
exlimdv |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
64 |
63
|
com23 |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
65 |
64
|
imp32 |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
66 |
11 65
|
jca |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ( ◡ 𝑓 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
67 |
|
f1oeq1 |
⊢ ( 𝑒 = ◡ 𝑓 → ( 𝑒 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ↔ ◡ 𝑓 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ) ) |
68 |
|
imaeq1 |
⊢ ( 𝑒 = ◡ 𝑓 → ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) ) |
69 |
68
|
eqeq1d |
⊢ ( 𝑒 = ◡ 𝑓 → ( ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
70 |
69
|
ralbidv |
⊢ ( 𝑒 = ◡ 𝑓 → ( ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
71 |
70
|
anbi2d |
⊢ ( 𝑒 = ◡ 𝑓 → ( ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ↔ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
72 |
71
|
exbidv |
⊢ ( 𝑒 = ◡ 𝑓 → ( ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ↔ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
73 |
67 72
|
anbi12d |
⊢ ( 𝑒 = ◡ 𝑓 → ( ( 𝑒 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ↔ ( ◡ 𝑓 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( ◡ 𝑓 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
74 |
8 66 73
|
spcedv |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
75 |
2 1 4 3
|
isomgr |
⊢ ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ UHGraph ) → ( 𝐵 IsomGr 𝐴 ↔ ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
76 |
75
|
ancoms |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( 𝐵 IsomGr 𝐴 ↔ ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
77 |
76
|
adantr |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ( 𝐵 IsomGr 𝐴 ↔ ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐴 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐴 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑒 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
78 |
74 77
|
mpbird |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → 𝐵 IsomGr 𝐴 ) |
79 |
78
|
ex |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → 𝐵 IsomGr 𝐴 ) ) |
80 |
79
|
exlimdv |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → 𝐵 IsomGr 𝐴 ) ) |
81 |
5 80
|
sylbid |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 IsomGr 𝐵 → 𝐵 IsomGr 𝐴 ) ) |