Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
1 2 3 4
|
isomgr |
|
6 |
|
vex |
|
7 |
6
|
cnvex |
|
8 |
7
|
a1i |
|
9 |
|
f1ocnv |
|
10 |
9
|
adantr |
|
11 |
10
|
adantl |
|
12 |
|
vex |
|
13 |
12
|
cnvex |
|
14 |
13
|
a1i |
|
15 |
|
f1ocnv |
|
16 |
15
|
adantr |
|
17 |
16
|
3ad2ant2 |
|
18 |
|
f1ocnvdm |
|
19 |
18
|
3ad2antl2 |
|
20 |
|
fveq2 |
|
21 |
20
|
imaeq2d |
|
22 |
|
2fveq3 |
|
23 |
21 22
|
eqeq12d |
|
24 |
23
|
adantl |
|
25 |
19 24
|
rspcdv |
|
26 |
|
f1ocnvfv2 |
|
27 |
26
|
3ad2antl2 |
|
28 |
27
|
fveq2d |
|
29 |
28
|
eqeq2d |
|
30 |
|
f1of1 |
|
31 |
30
|
3ad2ant3 |
|
32 |
31
|
adantr |
|
33 |
|
simpl1l |
|
34 |
1 3
|
uhgrss |
|
35 |
33 19 34
|
syl2anc |
|
36 |
32 35
|
jca |
|
37 |
36
|
adantr |
|
38 |
|
f1imacnv |
|
39 |
37 38
|
syl |
|
40 |
|
imaeq2 |
|
41 |
40
|
adantl |
|
42 |
39 41
|
eqtr3d |
|
43 |
42
|
ex |
|
44 |
29 43
|
sylbid |
|
45 |
25 44
|
syld |
|
46 |
45
|
ex |
|
47 |
46
|
com23 |
|
48 |
47
|
3exp |
|
49 |
48
|
com34 |
|
50 |
49
|
impd |
|
51 |
50
|
3imp1 |
|
52 |
51
|
eqcomd |
|
53 |
52
|
ralrimiva |
|
54 |
17 53
|
jca |
|
55 |
|
f1oeq1 |
|
56 |
|
fveq1 |
|
57 |
56
|
fveq2d |
|
58 |
57
|
eqeq2d |
|
59 |
58
|
ralbidv |
|
60 |
55 59
|
anbi12d |
|
61 |
14 54 60
|
spcedv |
|
62 |
61
|
3exp |
|
63 |
62
|
exlimdv |
|
64 |
63
|
com23 |
|
65 |
64
|
imp32 |
|
66 |
11 65
|
jca |
|
67 |
|
f1oeq1 |
|
68 |
|
imaeq1 |
|
69 |
68
|
eqeq1d |
|
70 |
69
|
ralbidv |
|
71 |
70
|
anbi2d |
|
72 |
71
|
exbidv |
|
73 |
67 72
|
anbi12d |
|
74 |
8 66 73
|
spcedv |
|
75 |
2 1 4 3
|
isomgr |
|
76 |
75
|
ancoms |
|
77 |
76
|
adantr |
|
78 |
74 77
|
mpbird |
|
79 |
78
|
ex |
|
80 |
79
|
exlimdv |
|
81 |
5 80
|
sylbid |
|