Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` A ) = ( Vtx ` A ) |
2 |
|
eqid |
|- ( Vtx ` B ) = ( Vtx ` B ) |
3 |
|
eqid |
|- ( iEdg ` A ) = ( iEdg ` A ) |
4 |
|
eqid |
|- ( iEdg ` B ) = ( iEdg ` B ) |
5 |
1 2 3 4
|
isomgr |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( A IsomGr B <-> E. f ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) ) |
6 |
|
vex |
|- f e. _V |
7 |
6
|
cnvex |
|- `' f e. _V |
8 |
7
|
a1i |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) -> `' f e. _V ) |
9 |
|
f1ocnv |
|- ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> `' f : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) ) |
10 |
9
|
adantr |
|- ( ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) -> `' f : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) ) |
11 |
10
|
adantl |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) -> `' f : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) ) |
12 |
|
vex |
|- g e. _V |
13 |
12
|
cnvex |
|- `' g e. _V |
14 |
13
|
a1i |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> `' g e. _V ) |
15 |
|
f1ocnv |
|- ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> `' g : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) ) |
16 |
15
|
adantr |
|- ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> `' g : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) ) |
17 |
16
|
3ad2ant2 |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> `' g : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) ) |
18 |
|
f1ocnvdm |
|- ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ j e. dom ( iEdg ` B ) ) -> ( `' g ` j ) e. dom ( iEdg ` A ) ) |
19 |
18
|
3ad2antl2 |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( `' g ` j ) e. dom ( iEdg ` A ) ) |
20 |
|
fveq2 |
|- ( i = ( `' g ` j ) -> ( ( iEdg ` A ) ` i ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) |
21 |
20
|
imaeq2d |
|- ( i = ( `' g ` j ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) |
22 |
|
2fveq3 |
|- ( i = ( `' g ` j ) -> ( ( iEdg ` B ) ` ( g ` i ) ) = ( ( iEdg ` B ) ` ( g ` ( `' g ` j ) ) ) ) |
23 |
21 22
|
eqeq12d |
|- ( i = ( `' g ` j ) -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) <-> ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` ( g ` ( `' g ` j ) ) ) ) ) |
24 |
23
|
adantl |
|- ( ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) /\ i = ( `' g ` j ) ) -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) <-> ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` ( g ` ( `' g ` j ) ) ) ) ) |
25 |
19 24
|
rspcdv |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) -> ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` ( g ` ( `' g ` j ) ) ) ) ) |
26 |
|
f1ocnvfv2 |
|- ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ j e. dom ( iEdg ` B ) ) -> ( g ` ( `' g ` j ) ) = j ) |
27 |
26
|
3ad2antl2 |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( g ` ( `' g ` j ) ) = j ) |
28 |
27
|
fveq2d |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( ( iEdg ` B ) ` ( g ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) ) |
29 |
28
|
eqeq2d |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` ( g ` ( `' g ` j ) ) ) <-> ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) ) ) |
30 |
|
f1of1 |
|- ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> f : ( Vtx ` A ) -1-1-> ( Vtx ` B ) ) |
31 |
30
|
3ad2ant3 |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> f : ( Vtx ` A ) -1-1-> ( Vtx ` B ) ) |
32 |
31
|
adantr |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> f : ( Vtx ` A ) -1-1-> ( Vtx ` B ) ) |
33 |
|
simpl1l |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> A e. UHGraph ) |
34 |
1 3
|
uhgrss |
|- ( ( A e. UHGraph /\ ( `' g ` j ) e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) C_ ( Vtx ` A ) ) |
35 |
33 19 34
|
syl2anc |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) C_ ( Vtx ` A ) ) |
36 |
32 35
|
jca |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( f : ( Vtx ` A ) -1-1-> ( Vtx ` B ) /\ ( ( iEdg ` A ) ` ( `' g ` j ) ) C_ ( Vtx ` A ) ) ) |
37 |
36
|
adantr |
|- ( ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) /\ ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) ) -> ( f : ( Vtx ` A ) -1-1-> ( Vtx ` B ) /\ ( ( iEdg ` A ) ` ( `' g ` j ) ) C_ ( Vtx ` A ) ) ) |
38 |
|
f1imacnv |
|- ( ( f : ( Vtx ` A ) -1-1-> ( Vtx ` B ) /\ ( ( iEdg ` A ) ` ( `' g ` j ) ) C_ ( Vtx ` A ) ) -> ( `' f " ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) |
39 |
37 38
|
syl |
|- ( ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) /\ ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) ) -> ( `' f " ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) |
40 |
|
imaeq2 |
|- ( ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) -> ( `' f " ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) |
41 |
40
|
adantl |
|- ( ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) /\ ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) ) -> ( `' f " ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) |
42 |
39 41
|
eqtr3d |
|- ( ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) /\ ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) |
43 |
42
|
ex |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` j ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) |
44 |
29 43
|
sylbid |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( ( f " ( ( iEdg ` A ) ` ( `' g ` j ) ) ) = ( ( iEdg ` B ) ` ( g ` ( `' g ` j ) ) ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) |
45 |
25 44
|
syld |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) |
46 |
45
|
ex |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> ( j e. dom ( iEdg ` B ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) ) |
47 |
46
|
com23 |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) -> ( j e. dom ( iEdg ` B ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) ) |
48 |
47
|
3exp |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) -> ( j e. dom ( iEdg ` B ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) ) ) ) |
49 |
48
|
com34 |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) -> ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> ( j e. dom ( iEdg ` B ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) ) ) ) |
50 |
49
|
impd |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> ( j e. dom ( iEdg ` B ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) ) ) ) |
51 |
50
|
3imp1 |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( ( iEdg ` A ) ` ( `' g ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) |
52 |
51
|
eqcomd |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) /\ j e. dom ( iEdg ` B ) ) -> ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) |
53 |
52
|
ralrimiva |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) |
54 |
17 53
|
jca |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> ( `' g : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) |
55 |
|
f1oeq1 |
|- ( h = `' g -> ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) <-> `' g : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) ) ) |
56 |
|
fveq1 |
|- ( h = `' g -> ( h ` j ) = ( `' g ` j ) ) |
57 |
56
|
fveq2d |
|- ( h = `' g -> ( ( iEdg ` A ) ` ( h ` j ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) |
58 |
57
|
eqeq2d |
|- ( h = `' g -> ( ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) <-> ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) |
59 |
58
|
ralbidv |
|- ( h = `' g -> ( A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) <-> A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) |
60 |
55 59
|
anbi12d |
|- ( h = `' g -> ( ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) <-> ( `' g : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( `' g ` j ) ) ) ) ) |
61 |
14 54 60
|
spcedv |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) -> E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) |
62 |
61
|
3exp |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) ) |
63 |
62
|
exlimdv |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) ) |
64 |
63
|
com23 |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) -> ( E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) ) |
65 |
64
|
imp32 |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) -> E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) |
66 |
11 65
|
jca |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) -> ( `' f : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) /\ E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) |
67 |
|
f1oeq1 |
|- ( e = `' f -> ( e : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) <-> `' f : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) ) ) |
68 |
|
imaeq1 |
|- ( e = `' f -> ( e " ( ( iEdg ` B ) ` j ) ) = ( `' f " ( ( iEdg ` B ) ` j ) ) ) |
69 |
68
|
eqeq1d |
|- ( e = `' f -> ( ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) <-> ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) |
70 |
69
|
ralbidv |
|- ( e = `' f -> ( A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) <-> A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) |
71 |
70
|
anbi2d |
|- ( e = `' f -> ( ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) <-> ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) |
72 |
71
|
exbidv |
|- ( e = `' f -> ( E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) <-> E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) |
73 |
67 72
|
anbi12d |
|- ( e = `' f -> ( ( e : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) /\ E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) <-> ( `' f : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) /\ E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( `' f " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) ) |
74 |
8 66 73
|
spcedv |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) -> E. e ( e : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) /\ E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) |
75 |
2 1 4 3
|
isomgr |
|- ( ( B e. Y /\ A e. UHGraph ) -> ( B IsomGr A <-> E. e ( e : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) /\ E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) ) |
76 |
75
|
ancoms |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( B IsomGr A <-> E. e ( e : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) /\ E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) ) |
77 |
76
|
adantr |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) -> ( B IsomGr A <-> E. e ( e : ( Vtx ` B ) -1-1-onto-> ( Vtx ` A ) /\ E. h ( h : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` A ) /\ A. j e. dom ( iEdg ` B ) ( e " ( ( iEdg ` B ) ` j ) ) = ( ( iEdg ` A ) ` ( h ` j ) ) ) ) ) ) |
78 |
74 77
|
mpbird |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) -> B IsomGr A ) |
79 |
78
|
ex |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) -> B IsomGr A ) ) |
80 |
79
|
exlimdv |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( E. f ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) -> B IsomGr A ) ) |
81 |
5 80
|
sylbid |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( A IsomGr B -> B IsomGr A ) ) |