Metamath Proof Explorer


Theorem isomgrsymb

Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrsymb A UHGraph B UHGraph A IsomGr B B IsomGr A

Proof

Step Hyp Ref Expression
1 isomgrsym A UHGraph B UHGraph A IsomGr B B IsomGr A
2 isomgrsym B UHGraph A UHGraph B IsomGr A A IsomGr B
3 2 ancoms A UHGraph B UHGraph B IsomGr A A IsomGr B
4 1 3 impbid A UHGraph B UHGraph A IsomGr B B IsomGr A