Metamath Proof Explorer


Theorem isomgrsymb

Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrsymb AUHGraphBUHGraphAIsomGrBBIsomGrA

Proof

Step Hyp Ref Expression
1 isomgrsym AUHGraphBUHGraphAIsomGrBBIsomGrA
2 isomgrsym BUHGraphAUHGraphBIsomGrAAIsomGrB
3 2 ancoms AUHGraphBUHGraphBIsomGrAAIsomGrB
4 1 3 impbid AUHGraphBUHGraphAIsomGrBBIsomGrA