Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphic graphs
isomgrsymb
Next ⟩
isomgrtrlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
isomgrsymb
Description:
The isomorphy relation is symmetric for hypergraphs.
(Contributed by
AV
, 11-Nov-2022)
Ref
Expression
Assertion
isomgrsymb
⊢
A
∈
UHGraph
∧
B
∈
UHGraph
→
A
IsomGr
B
↔
B
IsomGr
A
Proof
Step
Hyp
Ref
Expression
1
isomgrsym
⊢
A
∈
UHGraph
∧
B
∈
UHGraph
→
A
IsomGr
B
→
B
IsomGr
A
2
isomgrsym
⊢
B
∈
UHGraph
∧
A
∈
UHGraph
→
B
IsomGr
A
→
A
IsomGr
B
3
2
ancoms
⊢
A
∈
UHGraph
∧
B
∈
UHGraph
→
B
IsomGr
A
→
A
IsomGr
B
4
1
3
impbid
⊢
A
∈
UHGraph
∧
B
∈
UHGraph
→
A
IsomGr
B
↔
B
IsomGr
A