Step |
Hyp |
Ref |
Expression |
1 |
|
imaco |
⊢ ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( 𝑣 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
2 |
1
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( 𝑣 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) |
4 |
3
|
imaeq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
5 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
7 |
6
|
rspccv |
⊢ ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
10 |
9
|
imp |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
11 |
10
|
imaeq2d |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑣 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) = ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
12 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) |
13 |
|
f1of |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) → 𝑔 : dom ( iEdg ‘ 𝐴 ) ⟶ dom ( iEdg ‘ 𝐵 ) ) |
14 |
|
ffvelrn |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) ⟶ dom ( iEdg ‘ 𝐵 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐵 ) ) |
15 |
14
|
ex |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) ⟶ dom ( iEdg ‘ 𝐵 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐵 ) ) ) |
16 |
13 15
|
syl |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐵 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐵 ) ) ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐵 ) ) ) |
19 |
18
|
imp |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐵 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑗 ) → ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
21 |
20
|
imaeq2d |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑗 ) → ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
22 |
|
2fveq3 |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑗 ) → ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑗 ) → ( ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ↔ ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
24 |
23
|
rspccv |
⊢ ( ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐵 ) → ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) |
25 |
12 19 24
|
sylc |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
26 |
11 25
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑣 “ ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) |
27 |
|
f1ofn |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) → 𝑔 Fn dom ( iEdg ‘ 𝐴 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → 𝑔 Fn dom ( iEdg ‘ 𝐴 ) ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → 𝑔 Fn dom ( iEdg ‘ 𝐴 ) ) |
30 |
|
fvco2 |
⊢ ( ( 𝑔 Fn dom ( iEdg ‘ 𝐴 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) = ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
31 |
29 30
|
sylan |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) = ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
32 |
31
|
eqcomd |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) = ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) |
33 |
32
|
fveq2d |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ ( 𝑔 ‘ 𝑗 ) ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) |
34 |
2 26 33
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) |
35 |
34
|
ralrimiva |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) |