Step |
Hyp |
Ref |
Expression |
1 |
|
imaco |
|- ( ( v o. f ) " ( ( iEdg ` A ) ` j ) ) = ( v " ( f " ( ( iEdg ` A ) ` j ) ) ) |
2 |
1
|
a1i |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( v o. f ) " ( ( iEdg ` A ) ` j ) ) = ( v " ( f " ( ( iEdg ` A ) ` j ) ) ) ) |
3 |
|
fveq2 |
|- ( i = j -> ( ( iEdg ` A ) ` i ) = ( ( iEdg ` A ) ` j ) ) |
4 |
3
|
imaeq2d |
|- ( i = j -> ( f " ( ( iEdg ` A ) ` i ) ) = ( f " ( ( iEdg ` A ) ` j ) ) ) |
5 |
|
2fveq3 |
|- ( i = j -> ( ( iEdg ` B ) ` ( g ` i ) ) = ( ( iEdg ` B ) ` ( g ` j ) ) ) |
6 |
4 5
|
eqeq12d |
|- ( i = j -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) <-> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( g ` j ) ) ) ) |
7 |
6
|
rspccv |
|- ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) -> ( j e. dom ( iEdg ` A ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( g ` j ) ) ) ) |
8 |
7
|
adantl |
|- ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> ( j e. dom ( iEdg ` A ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( g ` j ) ) ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) -> ( j e. dom ( iEdg ` A ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( g ` j ) ) ) ) |
10 |
9
|
imp |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( g ` j ) ) ) |
11 |
10
|
imaeq2d |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( v " ( f " ( ( iEdg ` A ) ` j ) ) ) = ( v " ( ( iEdg ` B ) ` ( g ` j ) ) ) ) |
12 |
|
simplrr |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) |
13 |
|
f1of |
|- ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> g : dom ( iEdg ` A ) --> dom ( iEdg ` B ) ) |
14 |
|
ffvelrn |
|- ( ( g : dom ( iEdg ` A ) --> dom ( iEdg ` B ) /\ j e. dom ( iEdg ` A ) ) -> ( g ` j ) e. dom ( iEdg ` B ) ) |
15 |
14
|
ex |
|- ( g : dom ( iEdg ` A ) --> dom ( iEdg ` B ) -> ( j e. dom ( iEdg ` A ) -> ( g ` j ) e. dom ( iEdg ` B ) ) ) |
16 |
13 15
|
syl |
|- ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> ( j e. dom ( iEdg ` A ) -> ( g ` j ) e. dom ( iEdg ` B ) ) ) |
17 |
16
|
adantr |
|- ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> ( j e. dom ( iEdg ` A ) -> ( g ` j ) e. dom ( iEdg ` B ) ) ) |
18 |
17
|
ad2antlr |
|- ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) -> ( j e. dom ( iEdg ` A ) -> ( g ` j ) e. dom ( iEdg ` B ) ) ) |
19 |
18
|
imp |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( g ` j ) e. dom ( iEdg ` B ) ) |
20 |
|
fveq2 |
|- ( k = ( g ` j ) -> ( ( iEdg ` B ) ` k ) = ( ( iEdg ` B ) ` ( g ` j ) ) ) |
21 |
20
|
imaeq2d |
|- ( k = ( g ` j ) -> ( v " ( ( iEdg ` B ) ` k ) ) = ( v " ( ( iEdg ` B ) ` ( g ` j ) ) ) ) |
22 |
|
2fveq3 |
|- ( k = ( g ` j ) -> ( ( iEdg ` C ) ` ( w ` k ) ) = ( ( iEdg ` C ) ` ( w ` ( g ` j ) ) ) ) |
23 |
21 22
|
eqeq12d |
|- ( k = ( g ` j ) -> ( ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) <-> ( v " ( ( iEdg ` B ) ` ( g ` j ) ) ) = ( ( iEdg ` C ) ` ( w ` ( g ` j ) ) ) ) ) |
24 |
23
|
rspccv |
|- ( A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) -> ( ( g ` j ) e. dom ( iEdg ` B ) -> ( v " ( ( iEdg ` B ) ` ( g ` j ) ) ) = ( ( iEdg ` C ) ` ( w ` ( g ` j ) ) ) ) ) |
25 |
12 19 24
|
sylc |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( v " ( ( iEdg ` B ) ` ( g ` j ) ) ) = ( ( iEdg ` C ) ` ( w ` ( g ` j ) ) ) ) |
26 |
11 25
|
eqtrd |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( v " ( f " ( ( iEdg ` A ) ` j ) ) ) = ( ( iEdg ` C ) ` ( w ` ( g ` j ) ) ) ) |
27 |
|
f1ofn |
|- ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> g Fn dom ( iEdg ` A ) ) |
28 |
27
|
adantr |
|- ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) -> g Fn dom ( iEdg ` A ) ) |
29 |
28
|
ad2antlr |
|- ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) -> g Fn dom ( iEdg ` A ) ) |
30 |
|
fvco2 |
|- ( ( g Fn dom ( iEdg ` A ) /\ j e. dom ( iEdg ` A ) ) -> ( ( w o. g ) ` j ) = ( w ` ( g ` j ) ) ) |
31 |
29 30
|
sylan |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( w o. g ) ` j ) = ( w ` ( g ` j ) ) ) |
32 |
31
|
eqcomd |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( w ` ( g ` j ) ) = ( ( w o. g ) ` j ) ) |
33 |
32
|
fveq2d |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( iEdg ` C ) ` ( w ` ( g ` j ) ) ) = ( ( iEdg ` C ) ` ( ( w o. g ) ` j ) ) ) |
34 |
2 26 33
|
3eqtrd |
|- ( ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( v o. f ) " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` C ) ` ( ( w o. g ) ` j ) ) ) |
35 |
34
|
ralrimiva |
|- ( ( ( ( ( A e. UHGraph /\ B e. UHGraph /\ C e. X ) /\ f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ v : ( Vtx ` B ) -1-1-onto-> ( Vtx ` C ) ) /\ ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) /\ ( w : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` C ) /\ A. k e. dom ( iEdg ` B ) ( v " ( ( iEdg ` B ) ` k ) ) = ( ( iEdg ` C ) ` ( w ` k ) ) ) ) -> A. j e. dom ( iEdg ` A ) ( ( v o. f ) " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` C ) ` ( ( w o. g ) ` j ) ) ) |