Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐴 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐵 ) = ( Vtx ‘ 𝐵 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐴 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐵 ) = ( iEdg ‘ 𝐵 ) |
5 |
1 2 3 4
|
isomgr |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐶 ) = ( Vtx ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( iEdg ‘ 𝐶 ) = ( iEdg ‘ 𝐶 ) |
9 |
2 7 4 8
|
isomgr |
⊢ ( ( 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 IsomGr 𝐶 ↔ ∃ 𝑣 ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 IsomGr 𝐶 ↔ ∃ 𝑣 ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) ) |
11 |
6 10
|
anbi12d |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 IsomGr 𝐵 ∧ 𝐵 IsomGr 𝐶 ) ↔ ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ∃ 𝑣 ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) ) ) |
12 |
|
vex |
⊢ 𝑣 ∈ V |
13 |
|
vex |
⊢ 𝑓 ∈ V |
14 |
12 13
|
coex |
⊢ ( 𝑣 ∘ 𝑓 ) ∈ V |
15 |
14
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ∧ ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → ( 𝑣 ∘ 𝑓 ) ∈ V ) |
16 |
|
simpl |
⊢ ( ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) |
17 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) |
18 |
|
f1oco |
⊢ ( ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) → ( 𝑣 ∘ 𝑓 ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) |
19 |
16 17 18
|
syl2anr |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ∧ ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → ( 𝑣 ∘ 𝑓 ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) |
20 |
|
vex |
⊢ 𝑤 ∈ V |
21 |
|
vex |
⊢ 𝑔 ∈ V |
22 |
20 21
|
coex |
⊢ ( 𝑤 ∘ 𝑔 ) ∈ V |
23 |
22
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ( 𝑤 ∘ 𝑔 ) ∈ V ) |
24 |
|
simpl |
⊢ ( ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ) |
25 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) |
26 |
|
f1oco |
⊢ ( ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) → ( 𝑤 ∘ 𝑔 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ) |
27 |
24 25 26
|
syl2anr |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ( 𝑤 ∘ 𝑔 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ) |
28 |
|
isomgrtrlem |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) |
29 |
27 28
|
jca |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ( ( 𝑤 ∘ 𝑔 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) ) |
30 |
|
f1oeq1 |
⊢ ( ℎ = ( 𝑤 ∘ 𝑔 ) → ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ↔ ( 𝑤 ∘ 𝑔 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ) ) |
31 |
|
fveq1 |
⊢ ( ℎ = ( 𝑤 ∘ 𝑔 ) → ( ℎ ‘ 𝑗 ) = ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) |
32 |
31
|
fveq2d |
⊢ ( ℎ = ( 𝑤 ∘ 𝑔 ) → ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) |
33 |
32
|
eqeq2d |
⊢ ( ℎ = ( 𝑤 ∘ 𝑔 ) → ( ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) ) |
34 |
33
|
ralbidv |
⊢ ( ℎ = ( 𝑤 ∘ 𝑔 ) → ( ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) ) |
35 |
30 34
|
anbi12d |
⊢ ( ℎ = ( 𝑤 ∘ 𝑔 ) → ( ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ↔ ( ( 𝑤 ∘ 𝑔 ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ( 𝑤 ∘ 𝑔 ) ‘ 𝑗 ) ) ) ) ) |
36 |
23 29 35
|
spcedv |
⊢ ( ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
37 |
36
|
ex |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
38 |
37
|
exlimdv |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
39 |
38
|
ex |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
40 |
39
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
41 |
40
|
3exp |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) ) |
42 |
41
|
com34 |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) → ( ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) ) ) |
43 |
42
|
imp32 |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) → ( ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
44 |
43
|
imp32 |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ∧ ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
45 |
19 44
|
jca |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ∧ ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑣 ∘ 𝑓 ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
46 |
|
f1oeq1 |
⊢ ( 𝑒 = ( 𝑣 ∘ 𝑓 ) → ( 𝑒 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ↔ ( 𝑣 ∘ 𝑓 ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ) ) |
47 |
|
imaeq1 |
⊢ ( 𝑒 = ( 𝑣 ∘ 𝑓 ) → ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) ) |
48 |
47
|
eqeq1d |
⊢ ( 𝑒 = ( 𝑣 ∘ 𝑓 ) → ( ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
49 |
48
|
ralbidv |
⊢ ( 𝑒 = ( 𝑣 ∘ 𝑓 ) → ( ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) |
50 |
49
|
anbi2d |
⊢ ( 𝑒 = ( 𝑣 ∘ 𝑓 ) → ( ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ↔ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
51 |
50
|
exbidv |
⊢ ( 𝑒 = ( 𝑣 ∘ 𝑓 ) → ( ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ↔ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
52 |
46 51
|
anbi12d |
⊢ ( 𝑒 = ( 𝑣 ∘ 𝑓 ) → ( ( 𝑒 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ↔ ( ( 𝑣 ∘ 𝑓 ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( ( 𝑣 ∘ 𝑓 ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
53 |
15 45 52
|
spcedv |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ∧ ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) |
54 |
1 7 3 8
|
isomgr |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 IsomGr 𝐶 ↔ ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
55 |
54
|
3adant2 |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 IsomGr 𝐶 ↔ ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ∧ ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → ( 𝐴 IsomGr 𝐶 ↔ ∃ 𝑒 ( 𝑒 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ ℎ ( ℎ : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑗 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑒 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑗 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( ℎ ‘ 𝑗 ) ) ) ) ) ) |
57 |
53 56
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ∧ ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → 𝐴 IsomGr 𝐶 ) |
58 |
57
|
ex |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ( ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → 𝐴 IsomGr 𝐶 ) ) |
59 |
58
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) → ( ∃ 𝑣 ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → 𝐴 IsomGr 𝐶 ) ) |
60 |
59
|
ex |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ∃ 𝑣 ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → 𝐴 IsomGr 𝐶 ) ) ) |
61 |
60
|
exlimdv |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ∃ 𝑣 ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) → 𝐴 IsomGr 𝐶 ) ) ) |
62 |
61
|
impd |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ∧ ∃ 𝑣 ( 𝑣 : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐶 ) ∧ ∃ 𝑤 ( 𝑤 : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐶 ) ∧ ∀ 𝑘 ∈ dom ( iEdg ‘ 𝐵 ) ( 𝑣 “ ( ( iEdg ‘ 𝐵 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐶 ) ‘ ( 𝑤 ‘ 𝑘 ) ) ) ) ) → 𝐴 IsomGr 𝐶 ) ) |
63 |
11 62
|
sylbid |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 IsomGr 𝐵 ∧ 𝐵 IsomGr 𝐶 ) → 𝐴 IsomGr 𝐶 ) ) |