Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
|- V = ( Vtx ` A ) |
2 |
|
isomushgr.w |
|- W = ( Vtx ` B ) |
3 |
|
isomushgr.e |
|- E = ( Edg ` A ) |
4 |
|
isomushgr.k |
|- K = ( Edg ` B ) |
5 |
|
isomuspgrlem2.g |
|- G = ( x e. E |-> ( F " x ) ) |
6 |
5
|
a1i |
|- ( ( F e. X /\ e e. E ) -> G = ( x e. E |-> ( F " x ) ) ) |
7 |
|
imaeq2 |
|- ( x = e -> ( F " x ) = ( F " e ) ) |
8 |
7
|
adantl |
|- ( ( ( F e. X /\ e e. E ) /\ x = e ) -> ( F " x ) = ( F " e ) ) |
9 |
|
simpr |
|- ( ( F e. X /\ e e. E ) -> e e. E ) |
10 |
|
imaexg |
|- ( F e. X -> ( F " e ) e. _V ) |
11 |
10
|
adantr |
|- ( ( F e. X /\ e e. E ) -> ( F " e ) e. _V ) |
12 |
6 8 9 11
|
fvmptd |
|- ( ( F e. X /\ e e. E ) -> ( G ` e ) = ( F " e ) ) |
13 |
12
|
eqcomd |
|- ( ( F e. X /\ e e. E ) -> ( F " e ) = ( G ` e ) ) |
14 |
13
|
ralrimiva |
|- ( F e. X -> A. e e. E ( F " e ) = ( G ` e ) ) |