Metamath Proof Explorer


Theorem isomuspgrlem2a

Description: Lemma 1 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)

Ref Expression
Hypotheses isomushgr.v 𝑉 = ( Vtx ‘ 𝐴 )
isomushgr.w 𝑊 = ( Vtx ‘ 𝐵 )
isomushgr.e 𝐸 = ( Edg ‘ 𝐴 )
isomushgr.k 𝐾 = ( Edg ‘ 𝐵 )
isomuspgrlem2.g 𝐺 = ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) )
Assertion isomuspgrlem2a ( 𝐹𝑋 → ∀ 𝑒𝐸 ( 𝐹𝑒 ) = ( 𝐺𝑒 ) )

Proof

Step Hyp Ref Expression
1 isomushgr.v 𝑉 = ( Vtx ‘ 𝐴 )
2 isomushgr.w 𝑊 = ( Vtx ‘ 𝐵 )
3 isomushgr.e 𝐸 = ( Edg ‘ 𝐴 )
4 isomushgr.k 𝐾 = ( Edg ‘ 𝐵 )
5 isomuspgrlem2.g 𝐺 = ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) )
6 5 a1i ( ( 𝐹𝑋𝑒𝐸 ) → 𝐺 = ( 𝑥𝐸 ↦ ( 𝐹𝑥 ) ) )
7 imaeq2 ( 𝑥 = 𝑒 → ( 𝐹𝑥 ) = ( 𝐹𝑒 ) )
8 7 adantl ( ( ( 𝐹𝑋𝑒𝐸 ) ∧ 𝑥 = 𝑒 ) → ( 𝐹𝑥 ) = ( 𝐹𝑒 ) )
9 simpr ( ( 𝐹𝑋𝑒𝐸 ) → 𝑒𝐸 )
10 imaexg ( 𝐹𝑋 → ( 𝐹𝑒 ) ∈ V )
11 10 adantr ( ( 𝐹𝑋𝑒𝐸 ) → ( 𝐹𝑒 ) ∈ V )
12 6 8 9 11 fvmptd ( ( 𝐹𝑋𝑒𝐸 ) → ( 𝐺𝑒 ) = ( 𝐹𝑒 ) )
13 12 eqcomd ( ( 𝐹𝑋𝑒𝐸 ) → ( 𝐹𝑒 ) = ( 𝐺𝑒 ) )
14 13 ralrimiva ( 𝐹𝑋 → ∀ 𝑒𝐸 ( 𝐹𝑒 ) = ( 𝐺𝑒 ) )