Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
isomuspgrlem2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸 ) → 𝐺 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ) |
7 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑒 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑒 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑥 = 𝑒 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑒 ) ) |
9 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) |
10 |
|
imaexg |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 “ 𝑒 ) ∈ V ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸 ) → ( 𝐹 “ 𝑒 ) ∈ V ) |
12 |
6 8 9 11
|
fvmptd |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸 ) → ( 𝐺 ‘ 𝑒 ) = ( 𝐹 “ 𝑒 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸 ) → ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝐹 ∈ 𝑋 → ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) |