Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
3
|
fvexi |
⊢ 𝐸 ∈ V |
6 |
5
|
mptex |
⊢ ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ∈ V |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) |
8 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → 𝐴 ∈ USPGraph ) |
9 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
11 |
|
vex |
⊢ 𝑓 ∈ V |
12 |
11
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → 𝑓 ∈ V ) |
13 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → 𝐵 ∈ USPGraph ) |
14 |
1 2 3 4 7 8 9 10 12 13
|
isomuspgrlem2e |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐾 ) |
15 |
1 2 3 4 7
|
isomuspgrlem2a |
⊢ ( 𝑓 ∈ V → ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) |
16 |
11 15
|
mp1i |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) |
17 |
14 16
|
jca |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) ) |
18 |
|
f1oeq1 |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) → ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ↔ ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐾 ) ) |
19 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) → ( 𝑔 ‘ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) → ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) ) |
22 |
18 21
|
anbi12d |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) → ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) ) ) |
23 |
22
|
spcegv |
⊢ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ∈ V → ( ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( ( 𝑥 ∈ 𝐸 ↦ ( 𝑓 “ 𝑥 ) ) ‘ 𝑒 ) ) → ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
24 |
6 17 23
|
mpsyl |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) → ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) |
25 |
24
|
ex |
⊢ ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |