Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
isomuspgrlem2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) |
6 |
|
isomuspgrlem2.a |
⊢ ( 𝜑 → 𝐴 ∈ USPGraph ) |
7 |
|
isomuspgrlem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
8 |
|
isomuspgrlem2.i |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
9 |
|
isomuspgrlem2.x |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
10 |
|
isomuspgrlem2.b |
⊢ ( 𝜑 → 𝐵 ∈ USPGraph ) |
11 |
1 2 3 4 5 6 7 8 9
|
isomuspgrlem2c |
⊢ ( 𝜑 → 𝐺 : 𝐸 –1-1→ 𝐾 ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
isomuspgrlem2d |
⊢ ( 𝜑 → 𝐺 : 𝐸 –onto→ 𝐾 ) |
13 |
|
df-f1o |
⊢ ( 𝐺 : 𝐸 –1-1-onto→ 𝐾 ↔ ( 𝐺 : 𝐸 –1-1→ 𝐾 ∧ 𝐺 : 𝐸 –onto→ 𝐾 ) ) |
14 |
11 12 13
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : 𝐸 –1-1-onto→ 𝐾 ) |