Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
isomuspgrlem2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) |
6 |
|
isomuspgrlem2.a |
⊢ ( 𝜑 → 𝐴 ∈ USPGraph ) |
7 |
|
isomuspgrlem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
8 |
|
isomuspgrlem2.i |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
9 |
|
isomuspgrlem2.x |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
10 |
|
isomuspgrlem2.b |
⊢ ( 𝜑 → 𝐵 ∈ USPGraph ) |
11 |
1 2 3 4 5 6 7 8
|
isomuspgrlem2b |
⊢ ( 𝜑 → 𝐺 : 𝐸 ⟶ 𝐾 ) |
12 |
|
uspgrupgr |
⊢ ( 𝐵 ∈ USPGraph → 𝐵 ∈ UPGraph ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ UPGraph ) |
14 |
2 4
|
upgredg |
⊢ ( ( 𝐵 ∈ UPGraph ∧ 𝑦 ∈ 𝐾 ) → ∃ 𝑐 ∈ 𝑊 ∃ 𝑑 ∈ 𝑊 𝑦 = { 𝑐 , 𝑑 } ) |
15 |
13 14
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ∃ 𝑐 ∈ 𝑊 ∃ 𝑑 ∈ 𝑊 𝑦 = { 𝑐 , 𝑑 } ) |
16 |
|
eleq1 |
⊢ ( 𝑦 = { 𝑐 , 𝑑 } → ( 𝑦 ∈ 𝐾 ↔ { 𝑐 , 𝑑 } ∈ 𝐾 ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑦 = { 𝑐 , 𝑑 } → ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ↔ ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ) ) |
18 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –onto→ 𝑊 ) |
19 |
7 18
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝑊 ) |
20 |
|
foelrn |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑐 ∈ 𝑊 ) → ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) ) |
21 |
19 20
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑊 ) → ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) ) |
22 |
21
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑊 → ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) |
23 |
|
foelrn |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑑 ∈ 𝑊 ) → ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) ) |
24 |
19 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑊 ) → ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝑑 ∈ 𝑊 → ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) ) ) |
26 |
22 25
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) → ( ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) ) ) |
29 |
|
preq12 |
⊢ ( ( 𝑐 = ( 𝐹 ‘ 𝑚 ) ∧ 𝑑 = ( 𝐹 ‘ 𝑛 ) ) → { 𝑐 , 𝑑 } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
30 |
29
|
ancoms |
⊢ ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → { 𝑐 , 𝑑 } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
31 |
30
|
eleq1d |
⊢ ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → ( { 𝑐 , 𝑑 } ∈ 𝐾 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 ) ) |
32 |
|
preq1 |
⊢ ( 𝑎 = 𝑚 → { 𝑎 , 𝑏 } = { 𝑚 , 𝑏 } ) |
33 |
32
|
eleq1d |
⊢ ( 𝑎 = 𝑚 → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { 𝑚 , 𝑏 } ∈ 𝐸 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑎 = 𝑚 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑚 ) ) |
35 |
34
|
preq1d |
⊢ ( 𝑎 = 𝑚 → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑏 ) } ) |
36 |
35
|
eleq1d |
⊢ ( 𝑎 = 𝑚 → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
37 |
33 36
|
bibi12d |
⊢ ( 𝑎 = 𝑚 → ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ↔ ( { 𝑚 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) |
38 |
|
preq2 |
⊢ ( 𝑏 = 𝑛 → { 𝑚 , 𝑏 } = { 𝑚 , 𝑛 } ) |
39 |
38
|
eleq1d |
⊢ ( 𝑏 = 𝑛 → ( { 𝑚 , 𝑏 } ∈ 𝐸 ↔ { 𝑚 , 𝑛 } ∈ 𝐸 ) ) |
40 |
|
fveq2 |
⊢ ( 𝑏 = 𝑛 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑛 ) ) |
41 |
40
|
preq2d |
⊢ ( 𝑏 = 𝑛 → { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑏 ) } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
42 |
41
|
eleq1d |
⊢ ( 𝑏 = 𝑛 → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 ) ) |
43 |
39 42
|
bibi12d |
⊢ ( 𝑏 = 𝑛 → ( ( { 𝑚 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ↔ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 ) ) ) |
44 |
37 43
|
rspc2va |
⊢ ( ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 ) ) |
45 |
44
|
bicomd |
⊢ ( ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 ↔ { 𝑚 , 𝑛 } ∈ 𝐸 ) ) |
46 |
45
|
ancoms |
⊢ ( ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 ↔ { 𝑚 , 𝑛 } ∈ 𝐸 ) ) |
47 |
46
|
biimpd |
⊢ ( ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) |
48 |
47
|
ex |
⊢ ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) ) |
49 |
8 48
|
syl |
⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) ) |
50 |
49
|
com13 |
⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐾 → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝜑 → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) ) |
51 |
31 50
|
syl6bi |
⊢ ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → ( { 𝑐 , 𝑑 } ∈ 𝐾 → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝜑 → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) ) ) |
52 |
51
|
com14 |
⊢ ( 𝜑 → ( { 𝑐 , 𝑑 } ∈ 𝐾 → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) ) ) |
53 |
52
|
imp |
⊢ ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → { 𝑚 , 𝑛 } ∈ 𝐸 ) ) ) |
55 |
54
|
imp31 |
⊢ ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) → { 𝑚 , 𝑛 } ∈ 𝐸 ) |
56 |
|
imaeq2 |
⊢ ( 𝑒 = { 𝑚 , 𝑛 } → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ { 𝑚 , 𝑛 } ) ) |
57 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) |
58 |
7 57
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
59 |
58
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
60 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑚 ∈ 𝑉 ) |
61 |
|
simpr |
⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → 𝑛 ∈ 𝑉 ) |
62 |
61
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑛 ∈ 𝑉 ) |
63 |
59 60 62
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
65 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
66 |
64 65
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
67 |
56 66
|
sylan9eqr |
⊢ ( ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) ∧ 𝑒 = { 𝑚 , 𝑛 } ) → ( 𝐹 “ 𝑒 ) = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
68 |
67
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) ∧ 𝑒 = { 𝑚 , 𝑛 } ) → ( { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ↔ { 𝑐 , 𝑑 } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) ) |
69 |
30
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) → { 𝑐 , 𝑑 } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
70 |
55 68 69
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) |
71 |
70
|
ex |
⊢ ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) |
72 |
71
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( ( 𝑑 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑐 = ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) |
73 |
72
|
expd |
⊢ ( ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( 𝑑 = ( 𝐹 ‘ 𝑛 ) → ( 𝑐 = ( 𝐹 ‘ 𝑚 ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) ) |
74 |
73
|
rexlimdva |
⊢ ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) → ( 𝑐 = ( 𝐹 ‘ 𝑚 ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) ) |
75 |
74
|
com23 |
⊢ ( ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) → ( 𝑐 = ( 𝐹 ‘ 𝑚 ) → ( ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) ) |
76 |
75
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) → ( ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) ) |
77 |
76
|
impd |
⊢ ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( ( ∃ 𝑚 ∈ 𝑉 𝑐 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑑 = ( 𝐹 ‘ 𝑛 ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) |
78 |
28 77
|
mpd |
⊢ ( ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) |
79 |
78
|
ex |
⊢ ( ( 𝜑 ∧ { 𝑐 , 𝑑 } ∈ 𝐾 ) → ( ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) |
80 |
17 79
|
syl6bi |
⊢ ( 𝑦 = { 𝑐 , 𝑑 } → ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) ) |
81 |
80
|
impd |
⊢ ( 𝑦 = { 𝑐 , 𝑑 } → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) |
82 |
81
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) → ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) |
83 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) → 𝑦 = { 𝑐 , 𝑑 } ) |
84 |
83
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) ∧ 𝑒 ∈ 𝐸 ) → 𝑦 = { 𝑐 , 𝑑 } ) |
85 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) ∧ 𝑒 ∈ 𝐸 ) → 𝐹 ∈ 𝑋 ) |
86 |
1 2 3 4 5
|
isomuspgrlem2a |
⊢ ( 𝐹 ∈ 𝑋 → ∀ 𝑦 ∈ 𝐸 ( 𝐹 “ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
87 |
85 86
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) ∧ 𝑒 ∈ 𝐸 ) → ∀ 𝑦 ∈ 𝐸 ( 𝐹 “ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
88 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑒 → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ 𝑒 ) ) |
89 |
|
fveq2 |
⊢ ( 𝑦 = 𝑒 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑒 ) ) |
90 |
88 89
|
eqeq12d |
⊢ ( 𝑦 = 𝑒 → ( ( 𝐹 “ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) ) |
91 |
90
|
rspcv |
⊢ ( 𝑒 ∈ 𝐸 → ( ∀ 𝑦 ∈ 𝐸 ( 𝐹 “ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) ) |
92 |
|
eqcom |
⊢ ( ( 𝐺 ‘ 𝑒 ) = ( 𝐹 “ 𝑒 ) ↔ ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) |
93 |
91 92
|
syl6ibr |
⊢ ( 𝑒 ∈ 𝐸 → ( ∀ 𝑦 ∈ 𝐸 ( 𝐹 “ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝐺 ‘ 𝑒 ) = ( 𝐹 “ 𝑒 ) ) ) |
94 |
93
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) ∧ 𝑒 ∈ 𝐸 ) → ( ∀ 𝑦 ∈ 𝐸 ( 𝐹 “ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝐺 ‘ 𝑒 ) = ( 𝐹 “ 𝑒 ) ) ) |
95 |
87 94
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝐺 ‘ 𝑒 ) = ( 𝐹 “ 𝑒 ) ) |
96 |
84 95
|
eqeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑦 = ( 𝐺 ‘ 𝑒 ) ↔ { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) |
97 |
96
|
rexbidva |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) → ( ∃ 𝑒 ∈ 𝐸 𝑦 = ( 𝐺 ‘ 𝑒 ) ↔ ∃ 𝑒 ∈ 𝐸 { 𝑐 , 𝑑 } = ( 𝐹 “ 𝑒 ) ) ) |
98 |
82 97
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) ∧ 𝑦 = { 𝑐 , 𝑑 } ) → ∃ 𝑒 ∈ 𝐸 𝑦 = ( 𝐺 ‘ 𝑒 ) ) |
99 |
98
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) ∧ ( 𝑐 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( 𝑦 = { 𝑐 , 𝑑 } → ∃ 𝑒 ∈ 𝐸 𝑦 = ( 𝐺 ‘ 𝑒 ) ) ) |
100 |
99
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ( ∃ 𝑐 ∈ 𝑊 ∃ 𝑑 ∈ 𝑊 𝑦 = { 𝑐 , 𝑑 } → ∃ 𝑒 ∈ 𝐸 𝑦 = ( 𝐺 ‘ 𝑒 ) ) ) |
101 |
15 100
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐾 ) → ∃ 𝑒 ∈ 𝐸 𝑦 = ( 𝐺 ‘ 𝑒 ) ) |
102 |
101
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐾 ∃ 𝑒 ∈ 𝐸 𝑦 = ( 𝐺 ‘ 𝑒 ) ) |
103 |
|
dffo3 |
⊢ ( 𝐺 : 𝐸 –onto→ 𝐾 ↔ ( 𝐺 : 𝐸 ⟶ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ∃ 𝑒 ∈ 𝐸 𝑦 = ( 𝐺 ‘ 𝑒 ) ) ) |
104 |
11 102 103
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : 𝐸 –onto→ 𝐾 ) |