Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
isomuspgrlem2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) |
6 |
|
isomuspgrlem2.a |
⊢ ( 𝜑 → 𝐴 ∈ USPGraph ) |
7 |
|
isomuspgrlem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
8 |
|
isomuspgrlem2.i |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
9 |
|
uspgrupgr |
⊢ ( 𝐴 ∈ USPGraph → 𝐴 ∈ UPGraph ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ UPGraph ) |
11 |
1 3
|
upgredg |
⊢ ( ( 𝐴 ∈ UPGraph ∧ 𝑥 ∈ 𝐸 ) → ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 𝑥 = { 𝑐 , 𝑑 } ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) → ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 𝑥 = { 𝑐 , 𝑑 } ) |
13 |
|
preq12 |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) |
14 |
13
|
eleq1d |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { 𝑐 , 𝑑 } ∈ 𝐸 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
19 |
16 18
|
preq12d |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } = { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ) |
20 |
19
|
eleq1d |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) |
21 |
14 20
|
bibi12d |
⊢ ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ↔ ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) ) |
22 |
21
|
rspc2gv |
⊢ ( ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) → ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) ) |
23 |
8 22
|
syl5com |
⊢ ( 𝜑 → ( ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) → ( ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) |
26 |
|
bicom |
⊢ ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ↔ ( { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ↔ { 𝑐 , 𝑑 } ∈ 𝐸 ) ) |
27 |
|
bianir |
⊢ ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ∧ ( { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ↔ { 𝑐 , 𝑑 } ∈ 𝐸 ) ) → { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) |
28 |
27
|
ex |
⊢ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( ( { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ↔ { 𝑐 , 𝑑 } ∈ 𝐸 ) → { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) |
29 |
26 28
|
syl5bi |
⊢ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) → { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) ) |
30 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) |
31 |
7 30
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) → 𝐹 Fn 𝑉 ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
34 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝑐 ∈ 𝑉 ) |
35 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝑑 ∈ 𝑉 ) |
36 |
33 34 35
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) |
37 |
36
|
adantl |
⊢ ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ∧ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) |
38 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( 𝐹 “ { 𝑐 , 𝑑 } ) = { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ) |
39 |
37 38
|
syl |
⊢ ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ∧ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ) → ( 𝐹 “ { 𝑐 , 𝑑 } ) = { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ) |
40 |
39
|
eqcomd |
⊢ ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ∧ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ) → { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } = ( 𝐹 “ { 𝑐 , 𝑑 } ) ) |
41 |
40
|
eleq1d |
⊢ ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ∧ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ) → ( { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ↔ ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) |
42 |
41
|
biimpd |
⊢ ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ∧ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ) → ( { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) |
43 |
42
|
ex |
⊢ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) ) |
44 |
43
|
com23 |
⊢ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 → ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) ) |
45 |
29 44
|
syld |
⊢ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) → ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) ) |
46 |
45
|
com13 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( { 𝑐 , 𝑑 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑐 ) , ( 𝐹 ‘ 𝑑 ) } ∈ 𝐾 ) → ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) ) |
47 |
25 46
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) |
48 |
|
eleq1 |
⊢ ( 𝑥 = { 𝑐 , 𝑑 } → ( 𝑥 ∈ 𝐸 ↔ { 𝑐 , 𝑑 } ∈ 𝐸 ) ) |
49 |
|
imaeq2 |
⊢ ( 𝑥 = { 𝑐 , 𝑑 } → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ { 𝑐 , 𝑑 } ) ) |
50 |
49
|
eleq1d |
⊢ ( 𝑥 = { 𝑐 , 𝑑 } → ( ( 𝐹 “ 𝑥 ) ∈ 𝐾 ↔ ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) |
51 |
48 50
|
imbi12d |
⊢ ( 𝑥 = { 𝑐 , 𝑑 } → ( ( 𝑥 ∈ 𝐸 → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ↔ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) → ( ( 𝑥 ∈ 𝐸 → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ↔ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐸 → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ↔ ( { 𝑐 , 𝑑 } ∈ 𝐸 → ( 𝐹 “ { 𝑐 , 𝑑 } ) ∈ 𝐾 ) ) ) |
54 |
47 53
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 = { 𝑐 , 𝑑 } ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝐸 → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ) |
55 |
54
|
exp31 |
⊢ ( 𝜑 → ( 𝑥 = { 𝑐 , 𝑑 } → ( ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐸 → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ) ) ) |
56 |
55
|
com24 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐸 → ( ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( 𝑥 = { 𝑐 , 𝑑 } → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ) ) ) |
57 |
56
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝑥 = { 𝑐 , 𝑑 } → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ) |
58 |
57
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) → ( ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 𝑥 = { 𝑐 , 𝑑 } → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) ) |
59 |
12 58
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
60 |
59
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐸 ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
61 |
5
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐸 ( 𝐹 “ 𝑥 ) ∈ 𝐾 ↔ 𝐺 : 𝐸 ⟶ 𝐾 ) |
62 |
60 61
|
sylib |
⊢ ( 𝜑 → 𝐺 : 𝐸 ⟶ 𝐾 ) |