Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
isomuspgrlem2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) |
6 |
|
isomuspgrlem2.a |
⊢ ( 𝜑 → 𝐴 ∈ USPGraph ) |
7 |
|
isomuspgrlem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
8 |
|
isomuspgrlem2.i |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
9 |
|
isomuspgrlem2.x |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
10 |
1 2 3 4 5 6 7 8
|
isomuspgrlem2b |
⊢ ( 𝜑 → 𝐺 : 𝐸 ⟶ 𝐾 ) |
11 |
1 2 3 4 5
|
isomuspgrlem2a |
⊢ ( 𝐹 ∈ 𝑋 → ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) |
13 |
|
imaeq2 |
⊢ ( 𝑒 = 𝑐 → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ 𝑐 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑒 = 𝑐 → ( 𝐺 ‘ 𝑒 ) = ( 𝐺 ‘ 𝑐 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑒 = 𝑐 → ( ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ↔ ( 𝐹 “ 𝑐 ) = ( 𝐺 ‘ 𝑐 ) ) ) |
16 |
15
|
rspcv |
⊢ ( 𝑐 ∈ 𝐸 → ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) → ( 𝐹 “ 𝑐 ) = ( 𝐺 ‘ 𝑐 ) ) ) |
17 |
16
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) → ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) → ( 𝐹 “ 𝑐 ) = ( 𝐺 ‘ 𝑐 ) ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) → ( 𝐹 “ 𝑐 ) = ( 𝐺 ‘ 𝑐 ) ) |
19 |
18
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) → ( 𝐺 ‘ 𝑐 ) = ( 𝐹 “ 𝑐 ) ) |
20 |
|
imaeq2 |
⊢ ( 𝑒 = 𝑑 → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ 𝑑 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑒 = 𝑑 → ( 𝐺 ‘ 𝑒 ) = ( 𝐺 ‘ 𝑑 ) ) |
22 |
20 21
|
eqeq12d |
⊢ ( 𝑒 = 𝑑 → ( ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ↔ ( 𝐹 “ 𝑑 ) = ( 𝐺 ‘ 𝑑 ) ) ) |
23 |
22
|
rspcv |
⊢ ( 𝑑 ∈ 𝐸 → ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) → ( 𝐹 “ 𝑑 ) = ( 𝐺 ‘ 𝑑 ) ) ) |
24 |
23
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) → ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) → ( 𝐹 “ 𝑑 ) = ( 𝐺 ‘ 𝑑 ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) → ( 𝐹 “ 𝑑 ) = ( 𝐺 ‘ 𝑑 ) ) |
26 |
25
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) → ( 𝐺 ‘ 𝑑 ) = ( 𝐹 “ 𝑑 ) ) |
27 |
19 26
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) = ( 𝐺 ‘ 𝑒 ) ) → ( ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑑 ) ↔ ( 𝐹 “ 𝑐 ) = ( 𝐹 “ 𝑑 ) ) ) |
28 |
12 27
|
mpidan |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) → ( ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑑 ) ↔ ( 𝐹 “ 𝑐 ) = ( 𝐹 “ 𝑑 ) ) ) |
29 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
30 |
7 29
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
31 |
|
uspgrupgr |
⊢ ( 𝐴 ∈ USPGraph → 𝐴 ∈ UPGraph ) |
32 |
|
upgruhgr |
⊢ ( 𝐴 ∈ UPGraph → 𝐴 ∈ UHGraph ) |
33 |
3
|
eleq2i |
⊢ ( 𝑐 ∈ 𝐸 ↔ 𝑐 ∈ ( Edg ‘ 𝐴 ) ) |
34 |
|
edguhgr |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝑐 ∈ ( Edg ‘ 𝐴 ) ) → 𝑐 ∈ 𝒫 ( Vtx ‘ 𝐴 ) ) |
35 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 ( Vtx ‘ 𝐴 ) → 𝑐 ⊆ ( Vtx ‘ 𝐴 ) ) |
36 |
35 1
|
sseqtrrdi |
⊢ ( 𝑐 ∈ 𝒫 ( Vtx ‘ 𝐴 ) → 𝑐 ⊆ 𝑉 ) |
37 |
34 36
|
syl |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝑐 ∈ ( Edg ‘ 𝐴 ) ) → 𝑐 ⊆ 𝑉 ) |
38 |
37
|
ex |
⊢ ( 𝐴 ∈ UHGraph → ( 𝑐 ∈ ( Edg ‘ 𝐴 ) → 𝑐 ⊆ 𝑉 ) ) |
39 |
33 38
|
syl5bi |
⊢ ( 𝐴 ∈ UHGraph → ( 𝑐 ∈ 𝐸 → 𝑐 ⊆ 𝑉 ) ) |
40 |
3
|
eleq2i |
⊢ ( 𝑑 ∈ 𝐸 ↔ 𝑑 ∈ ( Edg ‘ 𝐴 ) ) |
41 |
|
edguhgr |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝑑 ∈ ( Edg ‘ 𝐴 ) ) → 𝑑 ∈ 𝒫 ( Vtx ‘ 𝐴 ) ) |
42 |
|
elpwi |
⊢ ( 𝑑 ∈ 𝒫 ( Vtx ‘ 𝐴 ) → 𝑑 ⊆ ( Vtx ‘ 𝐴 ) ) |
43 |
42 1
|
sseqtrrdi |
⊢ ( 𝑑 ∈ 𝒫 ( Vtx ‘ 𝐴 ) → 𝑑 ⊆ 𝑉 ) |
44 |
41 43
|
syl |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝑑 ∈ ( Edg ‘ 𝐴 ) ) → 𝑑 ⊆ 𝑉 ) |
45 |
44
|
ex |
⊢ ( 𝐴 ∈ UHGraph → ( 𝑑 ∈ ( Edg ‘ 𝐴 ) → 𝑑 ⊆ 𝑉 ) ) |
46 |
40 45
|
syl5bi |
⊢ ( 𝐴 ∈ UHGraph → ( 𝑑 ∈ 𝐸 → 𝑑 ⊆ 𝑉 ) ) |
47 |
39 46
|
anim12d |
⊢ ( 𝐴 ∈ UHGraph → ( ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) → ( 𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉 ) ) ) |
48 |
32 47
|
syl |
⊢ ( 𝐴 ∈ UPGraph → ( ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) → ( 𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉 ) ) ) |
49 |
6 31 48
|
3syl |
⊢ ( 𝜑 → ( ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) → ( 𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉 ) ) ) |
50 |
49
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) → ( 𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉 ) ) |
51 |
|
f1imaeq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( 𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉 ) ) → ( ( 𝐹 “ 𝑐 ) = ( 𝐹 “ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) |
52 |
30 50 51
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) → ( ( 𝐹 “ 𝑐 ) = ( 𝐹 “ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) |
53 |
52
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) → ( ( 𝐹 “ 𝑐 ) = ( 𝐹 “ 𝑑 ) → 𝑐 = 𝑑 ) ) |
54 |
28 53
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸 ) ) → ( ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) |
55 |
54
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐸 ∀ 𝑑 ∈ 𝐸 ( ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) |
56 |
|
dff13 |
⊢ ( 𝐺 : 𝐸 –1-1→ 𝐾 ↔ ( 𝐺 : 𝐸 ⟶ 𝐾 ∧ ∀ 𝑐 ∈ 𝐸 ∀ 𝑑 ∈ 𝐸 ( ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) |
57 |
10 55 56
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : 𝐸 –1-1→ 𝐾 ) |