Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
|- V = ( Vtx ` A ) |
2 |
|
isomushgr.w |
|- W = ( Vtx ` B ) |
3 |
|
isomushgr.e |
|- E = ( Edg ` A ) |
4 |
|
isomushgr.k |
|- K = ( Edg ` B ) |
5 |
|
isomuspgrlem2.g |
|- G = ( x e. E |-> ( F " x ) ) |
6 |
|
isomuspgrlem2.a |
|- ( ph -> A e. USPGraph ) |
7 |
|
isomuspgrlem2.f |
|- ( ph -> F : V -1-1-onto-> W ) |
8 |
|
isomuspgrlem2.i |
|- ( ph -> A. a e. V A. b e. V ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) ) |
9 |
|
isomuspgrlem2.x |
|- ( ph -> F e. X ) |
10 |
1 2 3 4 5 6 7 8
|
isomuspgrlem2b |
|- ( ph -> G : E --> K ) |
11 |
1 2 3 4 5
|
isomuspgrlem2a |
|- ( F e. X -> A. e e. E ( F " e ) = ( G ` e ) ) |
12 |
9 11
|
syl |
|- ( ph -> A. e e. E ( F " e ) = ( G ` e ) ) |
13 |
|
imaeq2 |
|- ( e = c -> ( F " e ) = ( F " c ) ) |
14 |
|
fveq2 |
|- ( e = c -> ( G ` e ) = ( G ` c ) ) |
15 |
13 14
|
eqeq12d |
|- ( e = c -> ( ( F " e ) = ( G ` e ) <-> ( F " c ) = ( G ` c ) ) ) |
16 |
15
|
rspcv |
|- ( c e. E -> ( A. e e. E ( F " e ) = ( G ` e ) -> ( F " c ) = ( G ` c ) ) ) |
17 |
16
|
ad2antrl |
|- ( ( ph /\ ( c e. E /\ d e. E ) ) -> ( A. e e. E ( F " e ) = ( G ` e ) -> ( F " c ) = ( G ` c ) ) ) |
18 |
17
|
imp |
|- ( ( ( ph /\ ( c e. E /\ d e. E ) ) /\ A. e e. E ( F " e ) = ( G ` e ) ) -> ( F " c ) = ( G ` c ) ) |
19 |
18
|
eqcomd |
|- ( ( ( ph /\ ( c e. E /\ d e. E ) ) /\ A. e e. E ( F " e ) = ( G ` e ) ) -> ( G ` c ) = ( F " c ) ) |
20 |
|
imaeq2 |
|- ( e = d -> ( F " e ) = ( F " d ) ) |
21 |
|
fveq2 |
|- ( e = d -> ( G ` e ) = ( G ` d ) ) |
22 |
20 21
|
eqeq12d |
|- ( e = d -> ( ( F " e ) = ( G ` e ) <-> ( F " d ) = ( G ` d ) ) ) |
23 |
22
|
rspcv |
|- ( d e. E -> ( A. e e. E ( F " e ) = ( G ` e ) -> ( F " d ) = ( G ` d ) ) ) |
24 |
23
|
ad2antll |
|- ( ( ph /\ ( c e. E /\ d e. E ) ) -> ( A. e e. E ( F " e ) = ( G ` e ) -> ( F " d ) = ( G ` d ) ) ) |
25 |
24
|
imp |
|- ( ( ( ph /\ ( c e. E /\ d e. E ) ) /\ A. e e. E ( F " e ) = ( G ` e ) ) -> ( F " d ) = ( G ` d ) ) |
26 |
25
|
eqcomd |
|- ( ( ( ph /\ ( c e. E /\ d e. E ) ) /\ A. e e. E ( F " e ) = ( G ` e ) ) -> ( G ` d ) = ( F " d ) ) |
27 |
19 26
|
eqeq12d |
|- ( ( ( ph /\ ( c e. E /\ d e. E ) ) /\ A. e e. E ( F " e ) = ( G ` e ) ) -> ( ( G ` c ) = ( G ` d ) <-> ( F " c ) = ( F " d ) ) ) |
28 |
12 27
|
mpidan |
|- ( ( ph /\ ( c e. E /\ d e. E ) ) -> ( ( G ` c ) = ( G ` d ) <-> ( F " c ) = ( F " d ) ) ) |
29 |
|
f1of1 |
|- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
30 |
7 29
|
syl |
|- ( ph -> F : V -1-1-> W ) |
31 |
|
uspgrupgr |
|- ( A e. USPGraph -> A e. UPGraph ) |
32 |
|
upgruhgr |
|- ( A e. UPGraph -> A e. UHGraph ) |
33 |
3
|
eleq2i |
|- ( c e. E <-> c e. ( Edg ` A ) ) |
34 |
|
edguhgr |
|- ( ( A e. UHGraph /\ c e. ( Edg ` A ) ) -> c e. ~P ( Vtx ` A ) ) |
35 |
|
elpwi |
|- ( c e. ~P ( Vtx ` A ) -> c C_ ( Vtx ` A ) ) |
36 |
35 1
|
sseqtrrdi |
|- ( c e. ~P ( Vtx ` A ) -> c C_ V ) |
37 |
34 36
|
syl |
|- ( ( A e. UHGraph /\ c e. ( Edg ` A ) ) -> c C_ V ) |
38 |
37
|
ex |
|- ( A e. UHGraph -> ( c e. ( Edg ` A ) -> c C_ V ) ) |
39 |
33 38
|
syl5bi |
|- ( A e. UHGraph -> ( c e. E -> c C_ V ) ) |
40 |
3
|
eleq2i |
|- ( d e. E <-> d e. ( Edg ` A ) ) |
41 |
|
edguhgr |
|- ( ( A e. UHGraph /\ d e. ( Edg ` A ) ) -> d e. ~P ( Vtx ` A ) ) |
42 |
|
elpwi |
|- ( d e. ~P ( Vtx ` A ) -> d C_ ( Vtx ` A ) ) |
43 |
42 1
|
sseqtrrdi |
|- ( d e. ~P ( Vtx ` A ) -> d C_ V ) |
44 |
41 43
|
syl |
|- ( ( A e. UHGraph /\ d e. ( Edg ` A ) ) -> d C_ V ) |
45 |
44
|
ex |
|- ( A e. UHGraph -> ( d e. ( Edg ` A ) -> d C_ V ) ) |
46 |
40 45
|
syl5bi |
|- ( A e. UHGraph -> ( d e. E -> d C_ V ) ) |
47 |
39 46
|
anim12d |
|- ( A e. UHGraph -> ( ( c e. E /\ d e. E ) -> ( c C_ V /\ d C_ V ) ) ) |
48 |
32 47
|
syl |
|- ( A e. UPGraph -> ( ( c e. E /\ d e. E ) -> ( c C_ V /\ d C_ V ) ) ) |
49 |
6 31 48
|
3syl |
|- ( ph -> ( ( c e. E /\ d e. E ) -> ( c C_ V /\ d C_ V ) ) ) |
50 |
49
|
imp |
|- ( ( ph /\ ( c e. E /\ d e. E ) ) -> ( c C_ V /\ d C_ V ) ) |
51 |
|
f1imaeq |
|- ( ( F : V -1-1-> W /\ ( c C_ V /\ d C_ V ) ) -> ( ( F " c ) = ( F " d ) <-> c = d ) ) |
52 |
30 50 51
|
syl2an2r |
|- ( ( ph /\ ( c e. E /\ d e. E ) ) -> ( ( F " c ) = ( F " d ) <-> c = d ) ) |
53 |
52
|
biimpd |
|- ( ( ph /\ ( c e. E /\ d e. E ) ) -> ( ( F " c ) = ( F " d ) -> c = d ) ) |
54 |
28 53
|
sylbid |
|- ( ( ph /\ ( c e. E /\ d e. E ) ) -> ( ( G ` c ) = ( G ` d ) -> c = d ) ) |
55 |
54
|
ralrimivva |
|- ( ph -> A. c e. E A. d e. E ( ( G ` c ) = ( G ` d ) -> c = d ) ) |
56 |
|
dff13 |
|- ( G : E -1-1-> K <-> ( G : E --> K /\ A. c e. E A. d e. E ( ( G ` c ) = ( G ` d ) -> c = d ) ) ) |
57 |
10 55 56
|
sylanbrc |
|- ( ph -> G : E -1-1-> K ) |