Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
|- V = ( Vtx ` A ) |
2 |
|
isomushgr.w |
|- W = ( Vtx ` B ) |
3 |
|
isomushgr.e |
|- E = ( Edg ` A ) |
4 |
|
isomushgr.k |
|- K = ( Edg ` B ) |
5 |
|
isomuspgrlem2.g |
|- G = ( x e. E |-> ( F " x ) ) |
6 |
|
isomuspgrlem2.a |
|- ( ph -> A e. USPGraph ) |
7 |
|
isomuspgrlem2.f |
|- ( ph -> F : V -1-1-onto-> W ) |
8 |
|
isomuspgrlem2.i |
|- ( ph -> A. a e. V A. b e. V ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) ) |
9 |
|
uspgrupgr |
|- ( A e. USPGraph -> A e. UPGraph ) |
10 |
6 9
|
syl |
|- ( ph -> A e. UPGraph ) |
11 |
1 3
|
upgredg |
|- ( ( A e. UPGraph /\ x e. E ) -> E. c e. V E. d e. V x = { c , d } ) |
12 |
10 11
|
sylan |
|- ( ( ph /\ x e. E ) -> E. c e. V E. d e. V x = { c , d } ) |
13 |
|
preq12 |
|- ( ( a = c /\ b = d ) -> { a , b } = { c , d } ) |
14 |
13
|
eleq1d |
|- ( ( a = c /\ b = d ) -> ( { a , b } e. E <-> { c , d } e. E ) ) |
15 |
|
fveq2 |
|- ( a = c -> ( F ` a ) = ( F ` c ) ) |
16 |
15
|
adantr |
|- ( ( a = c /\ b = d ) -> ( F ` a ) = ( F ` c ) ) |
17 |
|
fveq2 |
|- ( b = d -> ( F ` b ) = ( F ` d ) ) |
18 |
17
|
adantl |
|- ( ( a = c /\ b = d ) -> ( F ` b ) = ( F ` d ) ) |
19 |
16 18
|
preq12d |
|- ( ( a = c /\ b = d ) -> { ( F ` a ) , ( F ` b ) } = { ( F ` c ) , ( F ` d ) } ) |
20 |
19
|
eleq1d |
|- ( ( a = c /\ b = d ) -> ( { ( F ` a ) , ( F ` b ) } e. K <-> { ( F ` c ) , ( F ` d ) } e. K ) ) |
21 |
14 20
|
bibi12d |
|- ( ( a = c /\ b = d ) -> ( ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) <-> ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) ) ) |
22 |
21
|
rspc2gv |
|- ( ( c e. V /\ d e. V ) -> ( A. a e. V A. b e. V ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) -> ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) ) ) |
23 |
8 22
|
syl5com |
|- ( ph -> ( ( c e. V /\ d e. V ) -> ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ x = { c , d } ) -> ( ( c e. V /\ d e. V ) -> ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) ) ) |
25 |
24
|
imp |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) ) |
26 |
|
bicom |
|- ( ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) <-> ( { ( F ` c ) , ( F ` d ) } e. K <-> { c , d } e. E ) ) |
27 |
|
bianir |
|- ( ( { c , d } e. E /\ ( { ( F ` c ) , ( F ` d ) } e. K <-> { c , d } e. E ) ) -> { ( F ` c ) , ( F ` d ) } e. K ) |
28 |
27
|
ex |
|- ( { c , d } e. E -> ( ( { ( F ` c ) , ( F ` d ) } e. K <-> { c , d } e. E ) -> { ( F ` c ) , ( F ` d ) } e. K ) ) |
29 |
26 28
|
syl5bi |
|- ( { c , d } e. E -> ( ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) -> { ( F ` c ) , ( F ` d ) } e. K ) ) |
30 |
|
f1ofn |
|- ( F : V -1-1-onto-> W -> F Fn V ) |
31 |
7 30
|
syl |
|- ( ph -> F Fn V ) |
32 |
31
|
adantr |
|- ( ( ph /\ x = { c , d } ) -> F Fn V ) |
33 |
32
|
adantr |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> F Fn V ) |
34 |
|
simprl |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> c e. V ) |
35 |
|
simprr |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> d e. V ) |
36 |
33 34 35
|
3jca |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( F Fn V /\ c e. V /\ d e. V ) ) |
37 |
36
|
adantl |
|- ( ( { c , d } e. E /\ ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) ) -> ( F Fn V /\ c e. V /\ d e. V ) ) |
38 |
|
fnimapr |
|- ( ( F Fn V /\ c e. V /\ d e. V ) -> ( F " { c , d } ) = { ( F ` c ) , ( F ` d ) } ) |
39 |
37 38
|
syl |
|- ( ( { c , d } e. E /\ ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) ) -> ( F " { c , d } ) = { ( F ` c ) , ( F ` d ) } ) |
40 |
39
|
eqcomd |
|- ( ( { c , d } e. E /\ ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) ) -> { ( F ` c ) , ( F ` d ) } = ( F " { c , d } ) ) |
41 |
40
|
eleq1d |
|- ( ( { c , d } e. E /\ ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) ) -> ( { ( F ` c ) , ( F ` d ) } e. K <-> ( F " { c , d } ) e. K ) ) |
42 |
41
|
biimpd |
|- ( ( { c , d } e. E /\ ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) ) -> ( { ( F ` c ) , ( F ` d ) } e. K -> ( F " { c , d } ) e. K ) ) |
43 |
42
|
ex |
|- ( { c , d } e. E -> ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( { ( F ` c ) , ( F ` d ) } e. K -> ( F " { c , d } ) e. K ) ) ) |
44 |
43
|
com23 |
|- ( { c , d } e. E -> ( { ( F ` c ) , ( F ` d ) } e. K -> ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( F " { c , d } ) e. K ) ) ) |
45 |
29 44
|
syld |
|- ( { c , d } e. E -> ( ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) -> ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( F " { c , d } ) e. K ) ) ) |
46 |
45
|
com13 |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( ( { c , d } e. E <-> { ( F ` c ) , ( F ` d ) } e. K ) -> ( { c , d } e. E -> ( F " { c , d } ) e. K ) ) ) |
47 |
25 46
|
mpd |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( { c , d } e. E -> ( F " { c , d } ) e. K ) ) |
48 |
|
eleq1 |
|- ( x = { c , d } -> ( x e. E <-> { c , d } e. E ) ) |
49 |
|
imaeq2 |
|- ( x = { c , d } -> ( F " x ) = ( F " { c , d } ) ) |
50 |
49
|
eleq1d |
|- ( x = { c , d } -> ( ( F " x ) e. K <-> ( F " { c , d } ) e. K ) ) |
51 |
48 50
|
imbi12d |
|- ( x = { c , d } -> ( ( x e. E -> ( F " x ) e. K ) <-> ( { c , d } e. E -> ( F " { c , d } ) e. K ) ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ x = { c , d } ) -> ( ( x e. E -> ( F " x ) e. K ) <-> ( { c , d } e. E -> ( F " { c , d } ) e. K ) ) ) |
53 |
52
|
adantr |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( ( x e. E -> ( F " x ) e. K ) <-> ( { c , d } e. E -> ( F " { c , d } ) e. K ) ) ) |
54 |
47 53
|
mpbird |
|- ( ( ( ph /\ x = { c , d } ) /\ ( c e. V /\ d e. V ) ) -> ( x e. E -> ( F " x ) e. K ) ) |
55 |
54
|
exp31 |
|- ( ph -> ( x = { c , d } -> ( ( c e. V /\ d e. V ) -> ( x e. E -> ( F " x ) e. K ) ) ) ) |
56 |
55
|
com24 |
|- ( ph -> ( x e. E -> ( ( c e. V /\ d e. V ) -> ( x = { c , d } -> ( F " x ) e. K ) ) ) ) |
57 |
56
|
imp31 |
|- ( ( ( ph /\ x e. E ) /\ ( c e. V /\ d e. V ) ) -> ( x = { c , d } -> ( F " x ) e. K ) ) |
58 |
57
|
rexlimdvva |
|- ( ( ph /\ x e. E ) -> ( E. c e. V E. d e. V x = { c , d } -> ( F " x ) e. K ) ) |
59 |
12 58
|
mpd |
|- ( ( ph /\ x e. E ) -> ( F " x ) e. K ) |
60 |
59
|
ralrimiva |
|- ( ph -> A. x e. E ( F " x ) e. K ) |
61 |
5
|
fmpt |
|- ( A. x e. E ( F " x ) e. K <-> G : E --> K ) |
62 |
60 61
|
sylib |
|- ( ph -> G : E --> K ) |