Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
|
2 |
|
isomushgr.w |
|
3 |
|
isomushgr.e |
|
4 |
|
isomushgr.k |
|
5 |
|
isomuspgrlem2.g |
|
6 |
|
isomuspgrlem2.a |
|
7 |
|
isomuspgrlem2.f |
|
8 |
|
isomuspgrlem2.i |
|
9 |
|
uspgrupgr |
|
10 |
6 9
|
syl |
|
11 |
1 3
|
upgredg |
|
12 |
10 11
|
sylan |
|
13 |
|
preq12 |
|
14 |
13
|
eleq1d |
|
15 |
|
fveq2 |
|
16 |
15
|
adantr |
|
17 |
|
fveq2 |
|
18 |
17
|
adantl |
|
19 |
16 18
|
preq12d |
|
20 |
19
|
eleq1d |
|
21 |
14 20
|
bibi12d |
|
22 |
21
|
rspc2gv |
|
23 |
8 22
|
syl5com |
|
24 |
23
|
adantr |
|
25 |
24
|
imp |
|
26 |
|
bicom |
|
27 |
|
bianir |
|
28 |
27
|
ex |
|
29 |
26 28
|
syl5bi |
|
30 |
|
f1ofn |
|
31 |
7 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
32
|
adantr |
|
34 |
|
simprl |
|
35 |
|
simprr |
|
36 |
33 34 35
|
3jca |
|
37 |
36
|
adantl |
|
38 |
|
fnimapr |
|
39 |
37 38
|
syl |
|
40 |
39
|
eqcomd |
|
41 |
40
|
eleq1d |
|
42 |
41
|
biimpd |
|
43 |
42
|
ex |
|
44 |
43
|
com23 |
|
45 |
29 44
|
syld |
|
46 |
45
|
com13 |
|
47 |
25 46
|
mpd |
|
48 |
|
eleq1 |
|
49 |
|
imaeq2 |
|
50 |
49
|
eleq1d |
|
51 |
48 50
|
imbi12d |
|
52 |
51
|
adantl |
|
53 |
52
|
adantr |
|
54 |
47 53
|
mpbird |
|
55 |
54
|
exp31 |
|
56 |
55
|
com24 |
|
57 |
56
|
imp31 |
|
58 |
57
|
rexlimdvva |
|
59 |
12 58
|
mpd |
|
60 |
59
|
ralrimiva |
|
61 |
5
|
fmpt |
|
62 |
60 61
|
sylib |
|