Metamath Proof Explorer


Theorem isomuspgrlem2

Description: Lemma 2 for isomuspgr . (Contributed by AV, 1-Dec-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
Assertion isomuspgrlem2 AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKgg:E1-1 ontoKeEfe=ge

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 3 fvexi EV
6 5 mptex xEfxV
7 eqid xEfx=xEfx
8 simplll AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKAUSHGraph
9 simplr AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKf:V1-1 ontoW
10 simpr AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKaVbVabEfafbK
11 vex fV
12 11 a1i AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKfV
13 simpllr AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKBUSHGraph
14 1 2 3 4 7 8 9 10 12 13 isomuspgrlem2e AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKxEfx:E1-1 ontoK
15 1 2 3 4 7 isomuspgrlem2a fVeEfe=xEfxe
16 11 15 mp1i AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKeEfe=xEfxe
17 14 16 jca AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKxEfx:E1-1 ontoKeEfe=xEfxe
18 f1oeq1 g=xEfxg:E1-1 ontoKxEfx:E1-1 ontoK
19 fveq1 g=xEfxge=xEfxe
20 19 eqeq2d g=xEfxfe=gefe=xEfxe
21 20 ralbidv g=xEfxeEfe=geeEfe=xEfxe
22 18 21 anbi12d g=xEfxg:E1-1 ontoKeEfe=gexEfx:E1-1 ontoKeEfe=xEfxe
23 22 spcegv xEfxVxEfx:E1-1 ontoKeEfe=xEfxegg:E1-1 ontoKeEfe=ge
24 6 17 23 mpsyl AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKgg:E1-1 ontoKeEfe=ge
25 24 ex AUSHGraphBUSHGraphf:V1-1 ontoWaVbVabEfafbKgg:E1-1 ontoKeEfe=ge