Metamath Proof Explorer


Theorem isomuspgr

Description: The isomorphy relation for two simple pseudographs. This corresponds to the definition in Bollobas p. 3. (Contributed by AV, 1-Dec-2022)

Ref Expression
Hypotheses isomushgr.v V = Vtx A
isomushgr.w W = Vtx B
isomushgr.e E = Edg A
isomushgr.k K = Edg B
Assertion isomuspgr A USHGraph B USHGraph A IsomGr B f f : V 1-1 onto W a V b V a b E f a f b K

Proof

Step Hyp Ref Expression
1 isomushgr.v V = Vtx A
2 isomushgr.w W = Vtx B
3 isomushgr.e E = Edg A
4 isomushgr.k K = Edg B
5 uspgrushgr A USHGraph A USHGraph
6 uspgrushgr B USHGraph B USHGraph
7 1 2 3 4 isomushgr A USHGraph B USHGraph A IsomGr B f f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e
8 5 6 7 syl2an A USHGraph B USHGraph A IsomGr B f f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e
9 imaeq2 e = a b f e = f a b
10 fveq2 e = a b g e = g a b
11 9 10 eqeq12d e = a b f e = g e f a b = g a b
12 11 rspccv e E f e = g e a b E f a b = g a b
13 12 adantl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E f a b = g a b
14 13 imp A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E f a b = g a b
15 f1ofn f : V 1-1 onto W f Fn V
16 15 ad3antlr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V f Fn V
17 simprl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V a V
18 simprr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V b V
19 fnimapr f Fn V a V b V f a b = f a f b
20 16 17 18 19 syl3anc A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V f a b = f a f b
21 20 eqeq1d A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V f a b = g a b f a f b = g a b
22 21 adantr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e f a b = g a b f a f b = g a b
23 22 adantr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E f a b = g a b f a f b = g a b
24 f1of g : E 1-1 onto K g : E K
25 24 ad3antlr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e g : E K
26 25 ffvelrnda A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E g a b K
27 eleq1 f a f b = g a b f a f b K g a b K
28 26 27 syl5ibrcom A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E f a f b = g a b f a f b K
29 23 28 sylbid A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E f a b = g a b f a f b K
30 14 29 mpd A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E f a f b K
31 30 exp41 A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K a V b V e E f e = g e a b E f a f b K
32 31 com23 A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
33 32 impr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
34 33 imp A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
35 1 2 3 4 isomuspgrlem1 A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e a V b V f a f b K a b E
36 34 35 impbid A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
37 36 ralrimivva A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
38 37 ex A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
39 38 exlimdv A USHGraph B USHGraph f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
40 1 2 3 4 isomuspgrlem2 A USHGraph B USHGraph f : V 1-1 onto W a V b V a b E f a f b K g g : E 1-1 onto K e E f e = g e
41 39 40 impbid A USHGraph B USHGraph f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e a V b V a b E f a f b K
42 41 pm5.32da A USHGraph B USHGraph f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e f : V 1-1 onto W a V b V a b E f a f b K
43 42 exbidv A USHGraph B USHGraph f f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e f f : V 1-1 onto W a V b V a b E f a f b K
44 8 43 bitrd A USHGraph B USHGraph A IsomGr B f f : V 1-1 onto W a V b V a b E f a f b K