Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
|
2 |
|
isomushgr.w |
|
3 |
|
isomushgr.e |
|
4 |
|
isomushgr.k |
|
5 |
|
uspgrushgr |
|
6 |
|
uspgrushgr |
|
7 |
1 2 3 4
|
isomushgr |
|
8 |
5 6 7
|
syl2an |
|
9 |
|
imaeq2 |
|
10 |
|
fveq2 |
|
11 |
9 10
|
eqeq12d |
|
12 |
11
|
rspccv |
|
13 |
12
|
adantl |
|
14 |
13
|
imp |
|
15 |
|
f1ofn |
|
16 |
15
|
ad3antlr |
|
17 |
|
simprl |
|
18 |
|
simprr |
|
19 |
|
fnimapr |
|
20 |
16 17 18 19
|
syl3anc |
|
21 |
20
|
eqeq1d |
|
22 |
21
|
adantr |
|
23 |
22
|
adantr |
|
24 |
|
f1of |
|
25 |
24
|
ad3antlr |
|
26 |
25
|
ffvelrnda |
|
27 |
|
eleq1 |
|
28 |
26 27
|
syl5ibrcom |
|
29 |
23 28
|
sylbid |
|
30 |
14 29
|
mpd |
|
31 |
30
|
exp41 |
|
32 |
31
|
com23 |
|
33 |
32
|
impr |
|
34 |
33
|
imp |
|
35 |
1 2 3 4
|
isomuspgrlem1 |
|
36 |
34 35
|
impbid |
|
37 |
36
|
ralrimivva |
|
38 |
37
|
ex |
|
39 |
38
|
exlimdv |
|
40 |
1 2 3 4
|
isomuspgrlem2 |
|
41 |
39 40
|
impbid |
|
42 |
41
|
pm5.32da |
|
43 |
42
|
exbidv |
|
44 |
8 43
|
bitrd |
|