Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
uspgrushgr |
⊢ ( 𝐴 ∈ USPGraph → 𝐴 ∈ USHGraph ) |
6 |
|
uspgrushgr |
⊢ ( 𝐵 ∈ USPGraph → 𝐵 ∈ USHGraph ) |
7 |
1 2 3 4
|
isomushgr |
⊢ ( ( 𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
9 |
|
imaeq2 |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ { 𝑎 , 𝑏 } ) ) |
10 |
|
fveq2 |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑔 ‘ 𝑒 ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) ) |
12 |
11
|
rspccv |
⊢ ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) ) |
13 |
12
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) |
15 |
|
f1ofn |
⊢ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 → 𝑓 Fn 𝑉 ) |
16 |
15
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑓 Fn 𝑉 ) |
17 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ 𝑉 ) |
18 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) |
19 |
|
fnimapr |
⊢ ( ( 𝑓 Fn 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑓 “ { 𝑎 , 𝑏 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) |
20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑓 “ { 𝑎 , 𝑏 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) |
21 |
20
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ) ) |
24 |
|
f1of |
⊢ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 → 𝑔 : 𝐸 ⟶ 𝐾 ) |
25 |
24
|
ad3antlr |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐸 ⟶ 𝐾 ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ∈ 𝐾 ) |
27 |
|
eleq1 |
⊢ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ↔ ( 𝑔 ‘ { 𝑎 , 𝑏 } ) ∈ 𝐾 ) ) |
28 |
26 27
|
syl5ibrcom |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
29 |
23 28
|
sylbid |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( ( 𝑓 “ { 𝑎 , 𝑏 } ) = ( 𝑔 ‘ { 𝑎 , 𝑏 } ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
30 |
14 29
|
mpd |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) |
31 |
30
|
exp41 |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
32 |
31
|
com23 |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) → ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
33 |
32
|
impr |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) |
34 |
33
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
35 |
1 2 3 4
|
isomuspgrlem1 |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
36 |
34 35
|
impbid |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
37 |
36
|
ralrimivva |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
38 |
37
|
ex |
⊢ ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) |
39 |
38
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) |
40 |
1 2 3 4
|
isomuspgrlem2 |
⊢ ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
41 |
39 40
|
impbid |
⊢ ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) |
42 |
41
|
pm5.32da |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
43 |
42
|
exbidv |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
44 |
8 43
|
bitrd |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |