Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
isomushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
simpl |
⊢ ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) |
7 |
|
f1ocnvdm |
⊢ ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) |
8 |
6 7
|
sylan |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) |
9 |
|
uspgrupgr |
⊢ ( 𝐴 ∈ USPGraph → 𝐴 ∈ UPGraph ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → 𝐴 ∈ UPGraph ) |
11 |
10
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → 𝐴 ∈ UPGraph ) |
12 |
1 3
|
upgredg |
⊢ ( ( 𝐴 ∈ UPGraph ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } ) |
13 |
11 12
|
sylan |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } ) |
14 |
|
eleq1 |
⊢ ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } → ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
15 |
14
|
biimpd |
⊢ ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } → ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 → { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
16 |
15
|
com12 |
⊢ ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 → ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } → { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
17 |
16
|
ad2antlr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } → { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
18 |
17
|
imp |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } ) → { 𝑥 , 𝑦 } ∈ 𝐸 ) |
19 |
5
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → 𝑔 : 𝐸 –1-1-onto→ 𝐾 ) |
20 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → { 𝑥 , 𝑦 } ∈ 𝐸 ) |
21 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) |
22 |
21
|
ad5ant12 |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) |
23 |
19 20 22
|
3jca |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) |
24 |
|
f1ocnvfvb |
⊢ ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ↔ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } ) ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ↔ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } ) ) |
26 |
|
imaeq2 |
⊢ ( 𝑒 = { 𝑥 , 𝑦 } → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ { 𝑥 , 𝑦 } ) ) |
27 |
|
fveq2 |
⊢ ( 𝑒 = { 𝑥 , 𝑦 } → ( 𝑔 ‘ 𝑒 ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑒 = { 𝑥 , 𝑦 } → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) ) |
29 |
28
|
rspccv |
⊢ ( ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) ) |
32 |
31
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) |
34 |
|
eqeq1 |
⊢ ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = ( 𝑓 “ { 𝑥 , 𝑦 } ) → ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ↔ ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ) |
35 |
34
|
eqcoms |
⊢ ( ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) → ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ↔ ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ) |
36 |
35
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ∧ ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) → ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ↔ ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ) |
37 |
|
f1ofn |
⊢ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 → 𝑓 Fn 𝑉 ) |
38 |
37
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑓 Fn 𝑉 ) |
39 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
40 |
39
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
41 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
42 |
41
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) |
43 |
38 40 42
|
3jca |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑓 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑓 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
45 |
|
fnimapr |
⊢ ( ( 𝑓 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } ) |
46 |
44 45
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } ) |
47 |
46
|
eqeq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ↔ { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ) |
48 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
49 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑦 ) ∈ V |
50 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑎 ) ∈ V |
51 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑏 ) ∈ V |
52 |
48 49 50 51
|
preq12b |
⊢ ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ↔ ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) ) ∨ ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) ) ) ) |
53 |
|
f1of1 |
⊢ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 → 𝑓 : 𝑉 –1-1→ 𝑊 ) |
54 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
55 |
54 39
|
anim12ci |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) |
56 |
|
f1veqaeq |
⊢ ( ( 𝑓 : 𝑉 –1-1→ 𝑊 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) → ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) → 𝑥 = 𝑎 ) ) |
57 |
53 55 56
|
syl2anr |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) → 𝑥 = 𝑎 ) ) |
58 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
59 |
58 41
|
anim12ci |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑦 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
60 |
|
f1veqaeq |
⊢ ( ( 𝑓 : 𝑉 –1-1→ 𝑊 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) → 𝑦 = 𝑏 ) ) |
61 |
53 59 60
|
syl2anr |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) → 𝑦 = 𝑏 ) ) |
62 |
57 61
|
anim12d |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) ) → ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) ) |
63 |
62
|
impcom |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) ) ∧ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ) → ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) |
64 |
63
|
orcd |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) ) ∧ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) |
65 |
64
|
ex |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) ) → ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) ) |
66 |
58 39
|
anim12ci |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
67 |
|
f1veqaeq |
⊢ ( ( 𝑓 : 𝑉 –1-1→ 𝑊 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ) |
68 |
53 66 67
|
syl2anr |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ) |
69 |
54 41
|
anim12ci |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑦 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) |
70 |
|
f1veqaeq |
⊢ ( ( 𝑓 : 𝑉 –1-1→ 𝑊 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) → 𝑦 = 𝑎 ) ) |
71 |
53 69 70
|
syl2anr |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) → 𝑦 = 𝑎 ) ) |
72 |
68 71
|
anim12d |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) ) → ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) |
73 |
72
|
impcom |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) ) ∧ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ) → ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) |
74 |
73
|
olcd |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) ) ∧ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) |
75 |
74
|
ex |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) ) → ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) ) |
76 |
65 75
|
jaoi |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) ) ∨ ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) ) ) → ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) ) |
77 |
|
vex |
⊢ 𝑥 ∈ V |
78 |
|
vex |
⊢ 𝑦 ∈ V |
79 |
|
vex |
⊢ 𝑎 ∈ V |
80 |
|
vex |
⊢ 𝑏 ∈ V |
81 |
77 78 79 80
|
preq12b |
⊢ ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) |
82 |
76 81
|
syl6ibr |
⊢ ( ( ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑏 ) ) ∨ ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑏 ) ∧ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑎 ) ) ) → ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
83 |
52 82
|
sylbi |
⊢ ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
84 |
83
|
com12 |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
85 |
84
|
expcom |
⊢ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
86 |
85
|
expd |
⊢ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
87 |
86
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
88 |
87
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
89 |
88
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
90 |
89
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
91 |
90
|
imp31 |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) |
92 |
91
|
eleq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
93 |
92
|
biimpd |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
94 |
93
|
impancom |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( { ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
95 |
47 94
|
sylbid |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
96 |
95
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ∧ ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) → ( ( 𝑓 “ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
97 |
36 96
|
sylbid |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ∧ ( 𝑓 “ { 𝑥 , 𝑦 } ) = ( 𝑔 ‘ { 𝑥 , 𝑦 } ) ) → ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
98 |
33 97
|
mpdan |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( 𝑔 ‘ { 𝑥 , 𝑦 } ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
99 |
25 98
|
sylbird |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
100 |
99
|
impancom |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
101 |
18 100
|
mpd |
⊢ ( ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
102 |
101
|
ex |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
103 |
102
|
rexlimdvva |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) = { 𝑥 , 𝑦 } → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
104 |
13 103
|
mpd |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ∧ ( ◡ 𝑔 ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) ∈ 𝐸 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
105 |
8 104
|
mpdan |
⊢ ( ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
106 |
105
|
ex |
⊢ ( ( ( ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) ∧ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑔 : 𝐸 –1-1-onto→ 𝐾 ∧ ∀ 𝑒 ∈ 𝐸 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |