Metamath Proof Explorer


Theorem isomgrref

Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrref ( 𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺 )

Proof

Step Hyp Ref Expression
1 id ( 𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph )
2 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
3 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
4 2 3 pm3.2i ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) )
5 4 a1i ( 𝐺 ∈ UHGraph → ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) ) )
6 isomgreqve ( ( ( 𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) ) ) → 𝐺 IsomGr 𝐺 )
7 1 1 5 6 syl21anc ( 𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺 )