Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isomgrref | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph ) | |
2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
4 | 2 3 | pm3.2i | ⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) ) |
5 | 4 | a1i | ⊢ ( 𝐺 ∈ UHGraph → ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) ) ) |
6 | isomgreqve | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) ) ) → 𝐺 IsomGr 𝐺 ) | |
7 | 1 1 5 6 | syl21anc | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 IsomGr 𝐺 ) |