Metamath Proof Explorer


Theorem isomgrref

Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrref G UHGraph G IsomGr G

Proof

Step Hyp Ref Expression
1 id G UHGraph G UHGraph
2 eqid Vtx G = Vtx G
3 eqid iEdg G = iEdg G
4 2 3 pm3.2i Vtx G = Vtx G iEdg G = iEdg G
5 4 a1i G UHGraph Vtx G = Vtx G iEdg G = iEdg G
6 isomgreqve G UHGraph G UHGraph Vtx G = Vtx G iEdg G = iEdg G G IsomGr G
7 1 1 5 6 syl21anc G UHGraph G IsomGr G