Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphic graphs
isomgrref
Next ⟩
isomgrsym
Metamath Proof Explorer
Ascii
Unicode
Theorem
isomgrref
Description:
The isomorphy relation is reflexive for hypergraphs.
(Contributed by
AV
, 11-Nov-2022)
Ref
Expression
Assertion
isomgrref
⊢
G
∈
UHGraph
→
G
IsomGr
G
Proof
Step
Hyp
Ref
Expression
1
id
⊢
G
∈
UHGraph
→
G
∈
UHGraph
2
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
3
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
4
2
3
pm3.2i
⊢
Vtx
⁡
G
=
Vtx
⁡
G
∧
iEdg
⁡
G
=
iEdg
⁡
G
5
4
a1i
⊢
G
∈
UHGraph
→
Vtx
⁡
G
=
Vtx
⁡
G
∧
iEdg
⁡
G
=
iEdg
⁡
G
6
isomgreqve
⊢
G
∈
UHGraph
∧
G
∈
UHGraph
∧
Vtx
⁡
G
=
Vtx
⁡
G
∧
iEdg
⁡
G
=
iEdg
⁡
G
→
G
IsomGr
G
7
1
1
5
6
syl21anc
⊢
G
∈
UHGraph
→
G
IsomGr
G