Description: The isomorphy relation is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isomgrref | |- ( G e. UHGraph -> G IsomGr G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( G e. UHGraph -> G e. UHGraph ) |
|
2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
4 | 2 3 | pm3.2i | |- ( ( Vtx ` G ) = ( Vtx ` G ) /\ ( iEdg ` G ) = ( iEdg ` G ) ) |
5 | 4 | a1i | |- ( G e. UHGraph -> ( ( Vtx ` G ) = ( Vtx ` G ) /\ ( iEdg ` G ) = ( iEdg ` G ) ) ) |
6 | isomgreqve | |- ( ( ( G e. UHGraph /\ G e. UHGraph ) /\ ( ( Vtx ` G ) = ( Vtx ` G ) /\ ( iEdg ` G ) = ( iEdg ` G ) ) ) -> G IsomGr G ) |
|
7 | 1 1 5 6 | syl21anc | |- ( G e. UHGraph -> G IsomGr G ) |