Metamath Proof Explorer


Theorem isomuspgrlem2e

Description: Lemma 5 for isomuspgrlem2 . (Contributed by AV, 1-Dec-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
isomuspgrlem2.g G=xEFx
isomuspgrlem2.a φAUSHGraph
isomuspgrlem2.f φF:V1-1 ontoW
isomuspgrlem2.i φaVbVabEFaFbK
isomuspgrlem2.x φFX
isomuspgrlem2.b φBUSHGraph
Assertion isomuspgrlem2e φG:E1-1 ontoK

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 isomuspgrlem2.g G=xEFx
6 isomuspgrlem2.a φAUSHGraph
7 isomuspgrlem2.f φF:V1-1 ontoW
8 isomuspgrlem2.i φaVbVabEFaFbK
9 isomuspgrlem2.x φFX
10 isomuspgrlem2.b φBUSHGraph
11 1 2 3 4 5 6 7 8 9 isomuspgrlem2c φG:E1-1K
12 1 2 3 4 5 6 7 8 9 10 isomuspgrlem2d φG:EontoK
13 df-f1o G:E1-1 ontoKG:E1-1KG:EontoK
14 11 12 13 sylanbrc φG:E1-1 ontoK