Metamath Proof Explorer


Theorem isomuspgrlem2e

Description: Lemma 5 for isomuspgrlem2 . (Contributed by AV, 1-Dec-2022)

Ref Expression
Hypotheses isomushgr.v V = Vtx A
isomushgr.w W = Vtx B
isomushgr.e E = Edg A
isomushgr.k K = Edg B
isomuspgrlem2.g G = x E F x
isomuspgrlem2.a φ A USHGraph
isomuspgrlem2.f φ F : V 1-1 onto W
isomuspgrlem2.i φ a V b V a b E F a F b K
isomuspgrlem2.x φ F X
isomuspgrlem2.b φ B USHGraph
Assertion isomuspgrlem2e φ G : E 1-1 onto K

Proof

Step Hyp Ref Expression
1 isomushgr.v V = Vtx A
2 isomushgr.w W = Vtx B
3 isomushgr.e E = Edg A
4 isomushgr.k K = Edg B
5 isomuspgrlem2.g G = x E F x
6 isomuspgrlem2.a φ A USHGraph
7 isomuspgrlem2.f φ F : V 1-1 onto W
8 isomuspgrlem2.i φ a V b V a b E F a F b K
9 isomuspgrlem2.x φ F X
10 isomuspgrlem2.b φ B USHGraph
11 1 2 3 4 5 6 7 8 9 isomuspgrlem2c φ G : E 1-1 K
12 1 2 3 4 5 6 7 8 9 10 isomuspgrlem2d φ G : E onto K
13 df-f1o G : E 1-1 onto K G : E 1-1 K G : E onto K
14 11 12 13 sylanbrc φ G : E 1-1 onto K